Andrea Cozzumbo Riccardo Murgia Gor Oganesyan Marica Branchesi

Model-independent cosmology with Bright Sirens

XIV Einstein Telescope symposium

LNGS

 $H(z) = H_0 \sqrt{\Omega_{m,0}(1+z)^3 + \Omega_{r,0}(1+z)^4 + \Omega_{k,0}(1+z)^2 + \Omega_{\text{DE},0}(1+z)^{3(1+w_{\text{DE}}(z))}}$

 $w_{\rm DE}(z) = \frac{P_{\rm DE}(z)}{\rho_{\rm DE}(z)}$

$$f_{\rm DE}(z) = \frac{\Omega_{\rm DE}(z)}{\Omega_{\rm DE,0}}$$

$w_{\rm DE}(z) = \frac{P_{\rm DE}(z)}{\rho_{\rm DE}(z)}$

XIV ET symposium | Maastricht

$H(z) = H_0 \sqrt{\Omega_{m,0}(1+z)^3 + \Omega_{r,0}(1+z)^4 + \Omega_{k,0}(1+z)^2 + \Omega_{\text{DE},0} f_{\text{DE}}(z)}$

 $f_{\rm DE}(z) = \frac{\Omega_{\rm DE}(z)}{\Omega_{\rm DE,0}}$

 $w_{\rm DE}(z) = \frac{P_{\rm DE}(z)}{\rho_{\rm DE}(z)}$

XIV ET symposium | Maastricht

$H(z) = H_0 \sqrt{\Omega_{m,0}(1+z)^3 + (1-\Omega_{m,0})} f_{\text{DE}}(z)$

$f_{\rm DE}(z) = \frac{\Omega_{\rm DE}(z)}{\Omega_{\rm DE,0}}$

$$w_{\rm DE}(z) = \frac{P_{\rm DE}(z)}{\rho_{\rm DE}(z)}$$

$d_I(z) = c($

We want to trace the Hubble parameter H(z)

XIV ET symposium | Maastricht

$H(z) = H_0 \sqrt{\Omega_{m,0}(1+z)^3 + (1-\Omega_{m,0})} f_{\text{DE}}(z)$

$$f_{\rm DE}(z) = \frac{\Omega_{\rm DE}(z)}{\Omega_{\rm DE,0}}$$

$$(1+z)\int_0^z \frac{dz'}{H(z')}$$

G S S I

G S

XIV ET symposium | Maastricht

GRB051210A

GRB111117A

GRB090426A _O

2.52.0

G S

G S

Dupletsa+, 2024

GW posteriors

XIV ET symposium | Maastricht

5 / 15

GW posteriors

 $\log \mathscr{L}(\theta) \propto \sum_{i=1}^{i=\text{events}} - \frac{(d_L^{\text{th}}(\theta) - d_L^{\text{obs},i})^2}{(d_L^{\text{th}}(\theta) - d_L^{\text{obs},i})^2}$ $2\sigma_{d_I,i}^2$

Parametric approach

$h^{2}(z) = \frac{H^{2}(z)}{H^{2}_{\alpha}} = \Omega_{m,0} (1+z)^{3} + (1-\Omega_{m,0}) f_{\text{DE}}(z)$

$w(z)^{\Lambda \text{CDM}} = w^{\Lambda \text{CDM}} = -1$

$f_{\rm DE}(z) = (1+z)^{3(1+w^{\Lambda {\rm CDM}})} = 1$

Parametric approach

 H_0

@ fixed catalog

G S

XIV ET symposium | Maastricht

Parametric approach

Μ

$h^{2}(z) = \frac{H^{2}(z)}{H_{0}^{2}} = \Omega_{m,0} (1+z)^{3} + (1-\Omega_{m,0}) f_{\text{DE}}(z)$

$$w(z)^{\text{CPL}} = w_0 + w_a \frac{z}{1+z}$$

 $f_{\rm DE}(z) = (1+z)^{3(1+w(z))}$

11 / 15

G S

XIV ET symposium | Maastricht

Parametric approach

CPL ΛCDM

$h^{2}(z) = \frac{H^{2}(z)}{H_{0}^{2}} = \Omega_{m,0} (1+z)^{3} + (1 - \Omega_{m,0}) f_{\text{DE}}(z)$

$$w(z)^{\text{CPL}} = w_0 + w_a \frac{z}{1+z}$$

 $f_{\rm DE}(z) = (1+z)^{3(1+w(z))}$

11 / 15

Non-parametric approach

$GP \rightarrow Gaussian Process$

$$h^{2}(z) = \frac{H^{2}(z)}{H_{0}^{2}} = \Omega_{m,0} (1+z)^{3} + (1 - \Omega_{m,0}) f_{\text{DE}}(z)$$

$$f_{\rm DE}(z) \sim GP(\bar{f}_{\rm DE} = 1, k(\sigma_f, l_f))$$

Non-parametric approach

XIV ET symposium | Maastricht

 $\Lambda \text{CDM Universe} \mid \text{ET } \Delta$

PEDE Universe | Pantheon+ & ET Δ + CE

Cozzumbo+, in prep.

13/15

Phenomenologically Emergent Dark Energy

13/15

Non-parametric approach PEDE Universe | Pantheon+ & ET Δ + CE

Non-parametric approach

Cozzumbo+, in prep.

Non-parametric approach

Cozzumbo+, in prep.

DESI collaboration, Adame+, 2024

 w_0

We compare different catalogs of GRBs and configuration of 3G GW detectors to understand the future prospects of cosmological constraints with Bright Sirens

We compare parametric and non-parametric approaches, underlining the **biases incurring** when choosing the wrong fitting model

Conclusions

We compare different catalogs of GRBs and configuration of 3G GW detectors to understand the future prospects of cosmological constraints with Bright Sirens

Conclusions

- We compare different catalogs of GRBs and configuration of 3G GW detectors to understand the future prospects of cosmological constraints with Bright Sirens
- We compare parametric and non-parametric approaches, underlining the **biases incurring** when choosing the wrong fitting model
- We show the potential of a model-independent reconstruction for **Einstein Telescope and** next generation cosmological probes

Thank you

for the attention!

MOD2

XIV ET symposium | Maastricht

