Harald Pfeiffer, Arnab Dhani, Sebastian H. Völkel, Alessandra Buonanno, Hector Estelles, Jonathan Gair, Lorenzo Pompili, Alexandre Toubiana

Max Planck Institute for Gravitational Physics

ET Symposium Maastricht, 7 May 2024

Systematic Biases in Estimating the **Properties of Black Holes Due to Inaccurate Gravitational-Wave Models**

arXiv:2404.05811

Future of GW Astrophysics

- More sensitive detectors
 - More events and more diverse systems
 - Higher SNR for loud events
 - wider detector bandwidth
- Physical completeness and accuracy of waveform models will be even more important than today

Example of challenges

- GW190814-like, but strongly precessing: $\chi_{eff} = 0.51$, $\chi_p = 0.45$
- E.g. for O5 sensitivity (SNR~75)
 - Mismatch(signal, template) = 0.04 (!)

- best-fit template gives **bias**: $\delta M/M \sim 0.03$, $\delta q/q \sim 0.06$, $\delta \chi_p / \chi_p \sim 0.13$

-	-	-	-
	<		-
			0
			0
		3	0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0

This work

- - SEOBNRv5PHM \rightarrow signal
 - IMRPhenomXPHM \rightarrow for inference
- Explore parameter space widely - where are problems?
- Study a few special cases in depth - how bad can it be?

Estimate biases using state-of-the-art BBH precessing HM waveforms

Linear-signal-approximation vs Bayesian

- Assumes h changes linearly in parameters θ_i
- Fisher Matrix $C^{ij} = (\langle \partial_{\theta_i} h, \partial_{\theta_i} h \rangle)^{-1}$
- Statistical uncertainty $\Delta \vartheta^i = \sqrt{C^{ii}} \propto \text{SNR}^{-1}$
- Parameter bias $\delta \vartheta^i = C^{ij} \langle \partial_{\theta_i} h, \delta h \rangle \propto \text{SNR}^0$ where δh is error of waveform
- δh by difference **between waveform models**
 - Essential to minimize over those waveform parameters that have inconsistent definitions/ conventions between models (alignment): min $h_S - h(\lambda)$ $\delta h \equiv$ $\lambda = \{t_c, \Psi, \Phi_{\text{ref}}, \Phi_{JL}\}$

Finn & Chernoff 93, Flanagan & Hughes 98, Cutler & Vallisneri 07 H. Pfeiffer 5

O5 network, GW170814-like, precessing, SNR 75

Results: LVK-like population

H. Pfeiffer 6

Exemplary results (more in arXiv:2404.05811)

Spin dependence of biases

H. Pfeiffer

symmetric mass-ratio spin 1 magnitude chirp mass *luminosity distance*

Exemplary results (more in arXiv:2404.05811)

More comprehensive scan of parameter space

- $q \ge 1/30$
- Distance up to which bias > statistical error
- Example how to read this plot: for small spins (highlighted in red)
 - biased only for very close sources
 - ► i.e. only at high SNR
 - i.e. waveform models quite good

More comprehensive scan of parameter space

- *q* ≥ 1/30
- Distance up to which bias > statistical error
- Example how to read this plot: for small spins (highlighted in red)
 biased only for very close sources
 i.e. only at high SNR
 - ► i.e. waveform models quite good
- For XG network, biases pervasive out to distances of many Gpc.

Concrete examples w/ full Bayesian PE

*
$$\chi_{eff} = 0.51, \chi_p = 0.45$$

*
$$SNR_{O5} = 75$$
, $SNR_{XG} = 1040$

*
$$\chi_{eff} = -0.43, \chi_p = 0.77$$

*
$$SNR_{O5} = 119, SNR_{XG} = 2490$$

D_L biased sky position biased > galaxy size [Hubble constant, EM counterparts]

Concrete examples w/ full Bayesian PE

*
$$m_1 = 61.8 M_{\odot}, m_2 = 9.5 M_{\odot}$$

* $\chi_{eff} = -0.43, \chi_p = 0.77$ and $\chi_{eff} = 0.89, \chi_p =$
* $SNR_{O5} = 119, SNR_{XG} = 2490$

Summary

- Today's state-of-the-art BBH waveform models would lead to widespread parameter estimation biases in XG detectors.
- Such biases can affect scientific conclusions:
 - Position of mass gaps \rightarrow supernova physics, NS max mass
 - Distance, sky position \rightarrow Hubble constant
 - Mass & spin distribution of BBH \rightarrow formation scenarios
 - Tests of GR
- Biases most pronounced for large spins and/or large mass-ratios

 Improved waveform models required for full science exploitation of XG detectors.

