Andrew L. Miller, Neha Singh and Cristiano Palomba andrew.miller@nikhef.nl

This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

Localizing binary neutron star inspirals using continuous-wave methods in ET

Background and Motivation

Binary Neutron Star Inspirals

- Inspiraling binary systems will be visible at low frequencies for a much longer time and overlap (~40-3000x longer for 5 or 1 Hz frequency floors)
- Within this time, assumptions made in matchedfiltering analyses, e.g. no gaps, noise stationarity, no glitches, could break down
- Phase mismatch accumulates with longer templates —> huge computational cost for matched filtering!
- CW methods could provide early-warning sky localization, and deal with overlapping signals efficiently

white noise up to 1.5 PN, $m_1 = m_2 = 0.9 M_{\odot}; \mathcal{M} = 0.78 M_{\odot}$

"Transient" continuous waves

4

 Signal frequency evolution over time follows a power-law and lasts
 Ø(hours – days)

Can describe gravitational waves from the inspiral portion of a light-enough binary system, or from a system far from coalesces Substitutional waves from quasi-Newtonian orbit

$$f = \kappa f^n$$

$$\dot{f} = \frac{96}{5} \pi^{8/3} \left(\frac{G\mathcal{M}}{c^3}\right)^{5/3} f^{11/3} \left[1 - \frac{1}{c^3}\right]^{11/3} f^{11/3} \left[1 - \frac{1}{c^3}$$

M: chirp mass
f: frequency
f: spin-up

Method

CW methods, without much loss in sensitivity, can detect multiple signals while robust against noise disturbances (e.g. not summing raw power)

Dealing with multiple signals

Miller et al., Phys.Rev.D 109 (2024) 4, 043021

Early warning and sky localization

> With one detector, astronomers could be warned at most between 0.5-4 hours before merger

Sky localization may vary.. requires more than simply a detection, but some follow-up steps

Miller et al., Phys.Rev.D 109 (2024) 4, 043021

Dealing with overlapping signals

- Injected a different number of signals with random durations, chirp masses and starting frequencies
- > 50 simulations at each N_{ini}
- Efficiency: fraction of signals recovered across *all* time/frequency maps
- This could definitely be improved... average PSD estimation not tuned to multiple signals yet - considered as well for standard CWs Pierini et al. PRD 106 (2022) 4, 042009

9

Can we do better than matched filtering?

- matched filtering, at fixed sensitivity

> We can quantify how much more computationally efficient our method is compared to

This depends on what the achievable minimum frequency of ET/CE will be, the number of templates necessary for matched filtering analyses, the (non-stationary) noise, among others

Need to account for higher-order PN corrections (e.g. spins) with the continuous-wave method Miller et al., Phys.Rev.D 109 (2024) 4, 043021 10

Conclusions

- Promising that Hough could be competitive with matched-filtering searches in 3G detectors
 Early warning is possible if the Hough can iteratively run in low-latency [needs
- Early warning is possible if the Hough can development!
- Not sure yet if better sky localization than time-lag (needs to be studied in depth)
- > Technical method development needed to apply Hough to localize and to higher-order PNs
- ▷ Primordial black hole binaries of masses up to $2.5M_{\odot}$ can also be searched for with these methods, as well as sub-solar mass ones
 Miller et al. Phys.Dark Univ. 32 (2021) 100836
- Collaborations and ideas are welcome!

Back-up slides

Connection to multi-messengers

- Sinary neutron star inspirals could last for O(hours-days) in future detectors, and are well-modeled by Post-Newtonian expansions
- "Early warning" for astronomers is realistic, given how long these signals could last
- > We propose an alternative to matched filtering that could provide early warnings to astronomers, with excellent sky resolution

Robustness against changing f_{min}

- > It is not clear what will be the frequency floor achievable in ET
- > We consider how our sensitivity will change $if f_{min} \neq 2 Hz$
- Normalized sensitivity defined w.r.t. the sensitivity at $f_{\min} = 2$ Hz
- The curves for each chirp mass do not all extend to 10 Hz because we set a threshold of at least 10 minutes to observe, and higher chirp mass systems will not last for longer than that between f_{\min} and 20 Hz

Results: astrophysical implications

Details of overlapping signal study

> chirp masses $[0.33, 1.14]M_{\odot}$ signal durations [200,10000] seconds > Maximum frequency of peak map: 7 Hz > 50 simulations per N_{ini} value

Starting frequencies uniformally distributed between [4.01,6.97] Hz,

16

Binary formation model constraints

Right: how long to observe to exclude certain population I and II field binary models (not already excluded by LVK merger rate predictions); each model predicts a merger rate density, and is compared with figure on left

> Models require assumptions on cosmic star formation, metallicity evolution, the initial binary parameters and the implied delay time (between the birth of a binary and the final merger of two compact objects) distribution

Belczynski et al., Astron. Astrophys. 636, A104 988 (2020)

Primordial Black Hole Binaries

- Can constrain the fraction of dark matter that PBHs could compose, in both equal-mass (blue) and asymmetric mass ratio (black) cases
- Slue: f_{PBH} calculated with $f_{sup} = 2.5 \times 10^{-3} \& \text{ monochromatic}$ mass function

> $\tilde{f}^{53/37} \equiv f_{\sup} f(m_1) f(m_2) f_{\text{PBH}}^{53/37}$ with $m_1 = 2.5 M_{\odot}$

18

With which T_{FFT}?

The gravitational-wave frequencies of systems with different chirp masses evolve at different rates, with smaller chirp masses having slower frequency drifts

- This is also a function of the time to merger
- Should be an "optimal one"

- Sensitivity estimation using ET power spectrum as a function of the observation time and frequency range to analyze, starting with a signal at 2 Hz
- At some point, it is no longer beneficial to observe the signal, since decreases
- This is actually ok for early-warning
- Sensitivity level is fixed in first pass of Hough

Optimal Sensitivity

20

Spin-up evolution, 1.5 PN

$$\frac{df}{dt} = \frac{96}{5}\pi^{8/3} \left(\frac{G\mathcal{M}}{c^3}\right)^{5/3} f^{11/3} \left[1 - \left(\frac{743}{336} + \frac{11}{4}\nu\right) \left(\pi\frac{GM}{c^3}f\right)^{2/3} + 4\pi \left(\pi\frac{GM}{c^3}f\right)\right]$$

$$\frac{df}{dt} = 1.02 \times 10^{-5} \,\mathrm{Hz/s} \left(\frac{\mathcal{M}}{1.22M_{\odot}}\right)^{5/3} \left(\frac{f}{2 \,\mathrm{Hz}}\right)^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{2/3} \left(\frac{f}{2 \,\mathrm{Hz}}\right)^{2/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right) \left(\frac{f}{2 \,\mathrm{Hz}}\right)^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{2/3} \left(\frac{f}{2 \,\mathrm{Hz}}\right)^{2/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{2/3} \left(\frac{f}{2 \,\mathrm{Hz}}\right)^{2/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{2/3} \left(\frac{f}{2 \,\mathrm{Hz}}\right)^{2/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{2/3} \left(\frac{f}{2 \,\mathrm{Hz}}\right)^{2/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{2/3} \left(\frac{f}{2 \,\mathrm{Hz}}\right)^{2/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{2/3} \left(\frac{f}{2 \,\mathrm{Hz}}\right)^{2/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{2/3} \left(\frac{f}{2 \,\mathrm{Hz}}\right)^{2/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{2/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{2/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} \right]^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} \right]^{11/3} \left[1 - 4.3 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11/3} + 1.1 \times 10^{-3} \left(\frac{M}{2.8M_{\odot}}\right)^{11$$

$$\frac{df}{dt} = \kappa_0 f^{11}$$

 $^{1/3} - \kappa_1 f^{13/3} + \kappa_{1.5} f^{14/3}$

Parameter space to cover

Minimum allowed mass based on 93 candidate neutron stars

How to compute sensitivity loss?

 $f^{-7/3}$.

$$\lambda \equiv 4 \int_{f_{\min}}^{f_{\max}} df \frac{|\tilde{h}(f)|^2}{S_n(f)}, \quad ; |\tilde{h}(f)|^2 = \frac{5}{6} \frac{4}{25} \frac{1}{4\pi^{4/3}} \frac{c^2}{d^2} \left(\frac{G\mathcal{M}}{c^3}\right)^{5/4}$$
$$P(S > S_{\text{thr}}; \lambda) = \int_{S_{\text{thr}}}^{\infty} dS e^{-S - \frac{\lambda}{2}} I_0\left(\sqrt{2S\lambda}\right), > 0.95 ; \text{ solve for } \lambda ;$$

> Means: spectrum distribution in presence of signal is a non-central χ^2 with 2 dof

$$S_{\text{thr}} = -\log\left(\frac{N_{\text{cand}}}{N_{\text{tot}}}\right), \quad -> \frac{N_{\text{cand}}}{N_{\text{tot}}} = FAP ;$$

> Means: spectral power is exponential in absence of a signal
 > Calculate the minimum detectable h₀ for MF as a function of λ:

$$h_{0,\min}^{\rm MF} = \sqrt{120\pi^{8/3}\lambda_{\min}\left(\frac{G\mathcal{M}}{c^3}\right)^{5/3}\left(\int_{f_{\min}}^{f_{\max}} df \frac{f^{-11/3}}{S_n(f)}\right)^{-1}} \cdot \text{comparison}$$

are to Generalized FH, compute ratio