XIV ET Symposium - Maastricht 6-10 May, 2024

Validating Fisher analysis against GWTC data

Ulyana Dupletsa

in collaboration with

Jan Harms, Ken Ng, Jacopo Tissino, Filippo Santoliquido, Andrea Cozzumbo

[Maggiore et al. 2020, Brachesi et al. 2023]

[Dupletsa et al. 2023]

[Maggiore et al. 2020, Brachesi et al. 2023]

Validating Prior-informed Fisher-matrix Analyses against GWTC Data

Ulyana Dupletsa⁽⁰⁾,^{1,2,*} Jan Harms⁽⁰⁾,^{1,2} Ken K. Y. Ng⁽⁰⁾,³ Jacopo Tissino⁽⁰⁾,^{1,2} Filippo Santoliquido⁽⁰⁾,^{1,2} and Andrea Cozzumbo⁽⁰⁾,²

 ¹Gran Sasso Science Institute (GSSI), I-67100 L'Aquila, Italy
²INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
³William H. Miller III Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

Validating Prior-informed Fisher-matrix Analyses against GWTC Data

Ulyana Dupletsa⁽⁰⁾,^{1,2,*} Jan Harms⁽⁰⁾,^{1,2} Ken K. Y. Ng⁽⁰⁾,³ Jacopo Tissino⁽⁰⁾,^{1,2} Filippo Santoliquido⁽⁰⁾,^{1,2} and Andrea Cozzumbo⁽⁰⁾,²

 ¹Gran Sasso Science Institute (GSSI), I-67100 L'Aquila, Italy
²INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
³William H. Miller III Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

Prior-informed Fisher Analysis

$$p(\vec{\theta}|d) \propto \pi(\vec{\theta}) \mathcal{L}(d|\vec{\theta})$$
$$\mathcal{L}(\alpha \exp\left[-\frac{1}{2}\left(\vec{\theta} - \vec{\theta}_{\rm inj}\right)^{\rm T} F\left(\vec{\theta} - \vec{\theta}_{\rm inj}\right)\right]$$

[Vallisneri 2008, lacovelli et al. 2022]

Fisher + Priors

• Likelihood from GWFish

Fisher + Priors

- Likelihood from GWFish
- Sampling from truncated likelihood [Botev 2016]

Fisher + Priors

- Likelihood from GWFish
- Sampling from truncated likelihood [Botev 2016]
- Re-weighting by prior probability

GWTC data

Fisher + Priors		parameter	units	prior
		\mathcal{M}_{c}	$\mid M_{\odot}$	Uniform
		q	M_{\odot}	Uniform
		d_L	[Mpc]	Power Law, d_L^2
	Likelihood from GWFish	$ heta_{JN}$	[rad]	Sine
	Sampling from trungated	DEC	[rad]	Cosine
•	Sampling nom truncated	RA	[rad]	Uniform
	likelihood [Botev 2016]	ϕ	[rad]	Uniform
	Re-weighting by prior	Ψ	[rad]	Uniform
	probability	t_c	[s]	Uniform
	probability	a_1	-	Uniform
		a_2	-	Uniform
		\mathtt{tilt}_1	[rad]	Sine
		\mathtt{tilt}_2	[rad]	Sine
		phi_{12}	[rad]	Uniform
	[LVK Collaboration, 2019, 2021 & 2023]	\mathtt{phi}_{JL}	[rad]	Uniform

Mass estimates

Mass estimates

Luminosity Distance

Luminosity Distance

Spin parameters

Spin parameters

Angular parameters and multi-modality

Angular parameters and multi-modality

H1 + L1 + V1 SNR: 4.3 + 6.8 + 4.7

• Reliability of Fisher matrix results

- Reliability of Fisher matrix results
- Role of SNR vs multi-modality

- Reliability of Fisher matrix results
- Role of SNR vs multi-modality
- Impact of priors in both Fisher and Bayesian PE

- Reliability of Fisher matrix results
- Role of SNR vs multi-modality
- Impact of priors in both Fisher and Bayesian PE

H1 + L1 + V1

