Revealing the strength of three-nucleon interactions with

the Einstein Telescope

Rose et al., Phys. Rev. C 108 (2023) 2, 025811

Peter T. H. Pang

• Extract the equation-of-state

- Extract the equation-of-state
 - Macroscopic
 - Mass, radius, ...

- Extract the equation-of-state
 - Macroscopic
 - Mass, radius, ...

Agathos et al., Phys.Rev.D 92 (2015) 2, 023012

- Extract the equation-of-state
 - Macroscopic
 - Mass, radius, ...
 - Microscopic
 - Pressure, density, ...

Agathos et al., Phys.Rev.D 92 (2015) 2, 023012

- Extract the equation-of-state
 - Macroscopic
 - Mass, radius, ...
 - Microscopic
 - Pressure, density, ...

Lackey et al., Phys. Rev. D 91, 043002 (2015)

- Extract the equation-of-state
 - Macroscopic
 - Mass, radius, ...
 - Microscopic
 - Pressure, density, ...
 - Microphysics?
 - Nucleon interaction

Lackey et al., Phys. Rev. D 91, 043002 (2015)

$\mathcal{H} = T + V_{\mathrm{NN}} + V_{\mathrm{3N}} + V_{\mathrm{4N}} + \cdots$

Four-nucleon interaction

- Three-body force
 - Cannot be described as a sum of pairwise interactions

- Three-body force
 - Cannot be described as a sum of pairwise interactions
- Fundamental interaction
 - Quarks and gluons

- Three-body force
 - Cannot be described as a sum of pairwise interactions
- Fundamental interaction
 - Quarks and gluons
- Effective interaction
 - Pairwise interaction manifests as three-body force

- Three-body force
 - Cannot be described as a sum of pairwise interactions
- Fundamental interaction
 - Quarks and gluons
- Effective interaction
 - Pairwise interaction manifests as three-body force
 - Tidal interaction between Sun, Earth and Moon

• Conventional approach

- Conventional approach
 - Properties of light nuclei

- Conventional approach
 - Properties of light nuclei
 - Extrapolate

- Conventional approach
 - Properties of light nuclei
 - Extrapolate
 - Heavier nuclei
 - Neutron star

- Conventional approach
 - Properties of light nuclei
 - Extrapolate
 - Heavier nuclei
 - Neutron star
 - Less sensitive to 3N interaction

- Conventional approach
 - Properties of light nuclei
 - Extrapolate
 - Heavier nuclei
 - Neutron star
 - Less sensitive to 3N interaction
 - Systematic uncertainty

- Conventional approach
 - Properties of light nuclei
 - Extrapolate
 - Heavier nuclei
 - Neutron star
 - Less sensitive to 3N interaction
 - Systematic uncertainty

What if we can study it directly with neutron star?

- TPE
 - Two-pion-exchange
- V_{E, 1}
 - TPE + repulsive 3N

- TPE
 - Two-pion-exchange
- V_{E, 1}
 - TPE + repulsive 3N

- TPE
 - Two-pion-exchange
- V_{E, 1}
 TPE + repulsive 3N
- Not resolvable with current detectors

- TPE
 - Two-pion-exchange
- V_{E, 1}
 TPE + repulsive 3N
- Not resolvable with current detectors

- Injection campaign
 - 3N interaction models considered
 - Two-Pion-Exchange (TPE)
 - TPE + repulsive 3N (V_{E, 1})

- Injection campaign
 - 3N interaction models considered
 - Two-Pion-Exchange (TPE)
 - TPE + repulsive 3N (V_{E, 1})
 - Injected BNS signals into designed triangular ET

- Injection campaign
 - 3N interaction models considered
 - Two-Pion-Exchange (TPE)
 - TPE + repulsive 3N (V_{E, 1})
 - Injected BNS signals into designed triangular ET
 - Parameter estimation with the two model as prior

- Injection campaign
 - 3N interaction models considered
 - Two-Pion-Exchange (TPE)
 - TPE + repulsive 3N (V_{E, 1})
 - Injected BNS signals into designed triangular ET
 - Parameter estimation with the two model as prior
 - Calculate the Bayes factor between the two models

TPE injection

 $V_{E, 1}$ injection

TPE injection

 $V_{E, 1}$ injection

ET is sensitive to microphysics

TPE injection

 $V_{E, 1}$ injection

Conclusion

- ET is sensitive to microphysics
- 3N nucleon interaction
 - Distinguishable with ~20 events
- ET also suffer from microphysics systematics
 - Significant bias
 - Crucial for extracting nuclear physics

Injection setup

- Masses following galactic binary neutron star
 - Gaussian with mean = 1.33, std = 0.09
- Uniform in co-moving volume
 - Within 200 Mpc
 - A SNR 30 cutoff
- 50-th percentile EOS in TOV mass
- 30Hz 2048Hz

Results

Prior

	parameter	\mathbf{symbol}	prior bounds
observational	luminosity distance [Mpc]	d_L	5 - 500
	inclination	$\cos \theta_{JN}$	-1 - 1
	phase [rad]	ϕ	$0-2\pi$
	polarisation [rad]	ψ	$0 - \pi$
	right ascension [rad]	α	$0-2\pi$
	declination [rad]	δ	$-\pi$ – π
orbital	chirp mass $[M_{\odot}]$	\mathcal{M}	1.20 - 1.30*
	source chirp mass $[M_{\odot}]$	\mathcal{M}_s	1.15 - 1.30*
	mass ratio	q	0.125 - 1
	source comp. mass $[M_{\odot}]$	$M_{i,s}$	> 0.5
	aligned component spin	χ_i	-0.15 - 0.15
hyper	Equation of State	EOS	1 - 3000