Run coordinator report

Nicolas Arnaud (<u>nicolas.arnaud@ijclab.in2p3.fr</u>) Laboratoire de Physique des Deux Infinis Irène Joliot-Curie (Université Paris-Saclay & CNRS/IN2P3) European Gravitational Observatory

STAC @ EGO Open session – May 28th, 2024

VIR-0448A-24

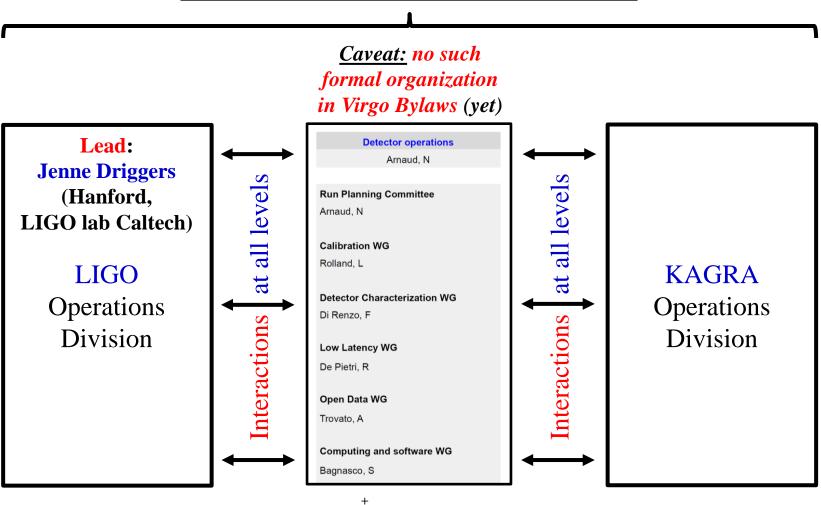
Outline

- From O4a to O4b
 - Preparing a 3-detector 10+ months joint data taking period
- O4b Virgo performance
 - Individual detector
 - Inside the LVK network
- Public alerts
- Lessons learned since the beginning of O4b
- Updates from working groups
 - Calibration, Computing, DetChar, Low-latency, Open data, Rapid Response Team
 - EGO operations team
- Outlook
- Dual O4b coordination

Run coordinator
Commissioning coordinator
Smooth management: regular interactions and quick info transmission both ways

2

 \rightarrow More / complementary info in Michal Was' talk, immediately following mine


O4a: 1-slide summary

- O1+O2+O3 = 90, O4a* = 81, Total = 171 180 * O4a entries are preliminary candidates found online. • O4a public alerts: 81 160 Cumulative Detections/Candidates 11 other triggers retracted • Virgo not part of the run O₃b 01 02 **O**3a **04a** \rightarrow No Virgo data by default • But Virgo could be nominally controlled at the time of a LIGO trigger \rightarrow Policy defined for the use of Virgo data, 20 if requested by data analysts • Relevant for O4a offline analysis 400 500 600 100 200 300 700 800 Time (Days) LIGO-G2302098(593c580f), updated on 16 January, 2024 Credit: LIGO-Virgo-KAGRA Collaboratio
 - Virgo contributions
 - Rapid Response Team (RRT): 1 8-hour shift / day in European TZ (~100% Virgo)
 - Smooth rota for Virgo
 - Groups who were not part of RRT during O4a are committed to in O4b
 - Computing
 - Low-latency alert infrastructure and analysis pipelines
 - O4a event validation jointly with LIGO
 - And data analysis working groups of course!

900

Run coordination: from Virgo to LVK

Joint LVK Rapid-Response Team (RRT)

EGO operations Dattilo, V

Run coordination: from Virgo to LVK

- Virgo run coordinator acts as liaison to the (LK) Operations division(s)
- 4 site advocates
 - LIGO Hanford: Jenne Driggers
 - KAGRA: Takahiro Sawada

LIGO Livingston: Brian O'Reilly

[Open]

[Closed]

5

- Virgo: NA
- 3 lead site advocates, each on duty 1/3rd of the time (alternating every other week)
 - Jenne, Brian and NA (+ backups from Virgo) not Takahiro
- Rapid Response Team
 - 3-tier system: Lv0 (on shift) \rightarrow Lv1 (experts) \rightarrow Lv2 (full team)
 - Coordination shared by geographical regions [↔ by collaborations in practice]
 - Europe (+ Africa): Francesco DR for Virgo: 1/3rd of the time since O4a
 - Asia/Pacific: KAGRA
- LVK Organization
 - Weekly Operations meeting
 - Weekly site advocates meeting
 - Monthly joint coordinator meeting with RRT
 - Monthly joint coordinator meeting with data analysis and RRT
- → Many working group meetings, LVK mailing lists and chat channels

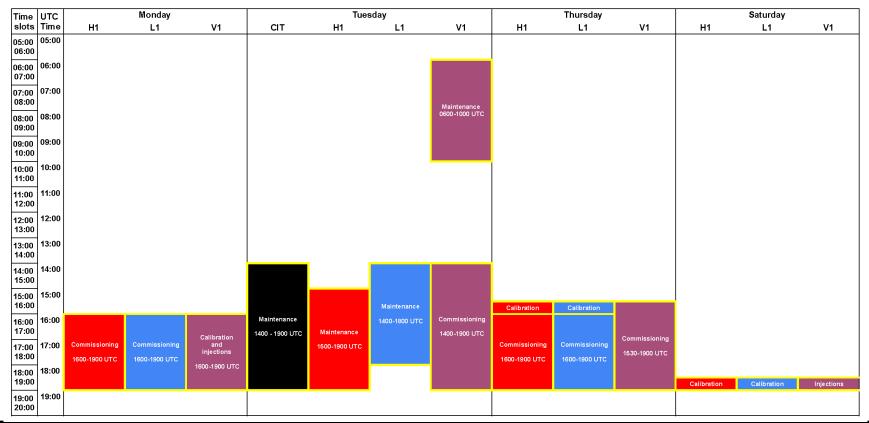
Americas: LIGO

Virgo O4b readiness

- 24/7 coverage in the control room
 - Crew of seven EGO operators minimum of five needed for one such rota
 - On-call experts provided by Virgo subsystems and Virgo working groups
- Joint low-latency alert infrastructure and online pipelines ready
 - Three such pipelines with significant Virgo contributions
 - Infrastructure work personpower-limited
- Computing
 - All data transfers (from and to EGO) running fine
 - Virgo low-latency h(t) production and transfer critical: direct interface with LIGO
 - Production software frozen limited improvements and developments as needed
- Improved calibration and h-reconstruction
 - Uncertainties reduced and better estimated, bias controlled
 - Better noise subtraction methods
 - Newtonian calibrators are complementing the photon calibrators
- Detector Characterization
 - Online data quality + Data Quality Report framework to vet low-latency events
 - Software tools and inputs from Virgo subsystems (channel lists)

O4b Planning

- Virgo to join O4b alongside LIGO from day 1 of this data-taking period
- O4b was scheduled to start on Wed. April 3rd
 - Delayed by a week: internet outage at LIGO Hanford on 05-07 April
 - \rightarrow O4b has started on Wed. April 10th at 1500 UTC
- Preceeded by Engineering Run ER16
 - March $20^{\text{th}} \rightarrow \text{April } 10^{\text{th}} \text{ (April } 3^{\text{rd}} \text{ originally)}$
 - \rightarrow Three weeks for final tuning
 - > detector work (sensitivity + stability)
 As time goes
 - Low-latency pipelines need time to shape their backgrounds
 - Automated public alerts enabled on Wed. April 3rd at 1500 UTC
 - **RRT** shifts restarted as well at the same time
 - Virgo TZ RRT planning well-covered for the first few months of O4b
- O4b to last at least 10 months
 - End date TBD, likely not earlier than mid-February 2025
 - \rightarrow Joint LVK discussion for a possible O4b extension of a few months


Use of Virgo data

- Virgo data not to used for triggering in low latency during O4b
 - Sensitivity ratio limits the improvement provided by a third detector
 - 50% more computing resources needed to go from 2 to 3 detectors
- Virgo data will be used in low latency for sky localization of the potential source
 - Using a third detector can significantly reduce the size of the skymaps
 - \rightarrow Virgo data are vet in low latency exactly like the LIGO data
 - Dedicated Virgo framework ready and fully operational
- \rightarrow O4b overall strategy: maximize 3-detector uptime
 - Requires more, continuous, coordination at the LVK level
 - In particular, align known, weekly recurring, downtimes see next slide

LVK planning

CIT Hanford Livingston Virgo

- Downtimes aligned as much as possible among the three detectors
 - Priority: 3-detector data taking

Downtimes / week

- Maintenance: 4 hours (2.4%)
- Calibration: 3 hours max. (1.8%)

- Commissioning: 8.5 hours max. (5.1%)
- Injections: 0.5 hour max. (0.3%)

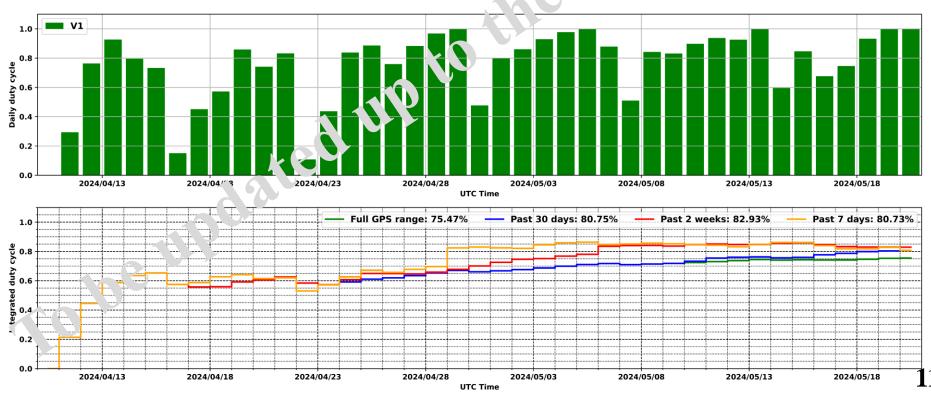
 \rightarrow Up to 10% of duty cycle

EGO operations team

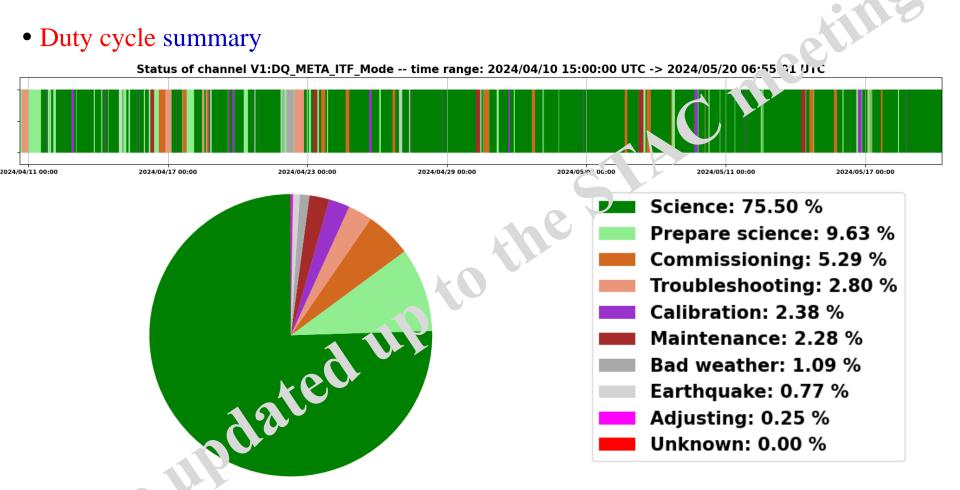
- New member added to the operators team
 - Team of 7 people needed for a long run
- Series of training sessions organized for operators
 - Held by subsystem and working group experts
 - → Slides and recordings available on <u>https://scientists.virgo-gw.eu/DetectorOperations/trainingsessionsschedule.htm</u>
- 3 shifts / day (7:00-15:00, 15:00-23:00 and 23:00-07:00) 7 days / week

 \rightarrow Full 24/7 coverage in control room

- Support to experts to configure and tune the Detector Monitoring System
- Re-defined / updated access rules to the technical/experimental areas
 → VIR-0282A-24


				in Mode. P	repuic_ac	ience (o			State. LO	citanto_	Cruth-				010.2024	05-20 19.11.	
Injection	ML				Р	PMC		LaserAmpli		LaserChiller			RFC			LNFS .	
	SLC_Ba_MC_Te	emp	MC_Powe		PSTAB		IMC_AA		IMC_AA_	GALVO	N	IC_F0_z	:	BPC		BPC_Electr	
Detection	PD	PE)_RF	QPD_B1p	QPD		QPD_E	34	QPD_B		QPD_RI		OMC				
ISC	PR_parking SR_	parking				UGF			B 4							PHI ViolinMo	
ALS	NE_AL	S_Laser			ALS_ARM		W	E_ALS	_Laser			E_ALS_	ARM		CEB_	ALS_Laser	
Suspensions	SIB1_IP		SIB1_BENCH		SIB1_BR			SIB1_Vert							SIB1_Electr		
	MC_IP		MC_PAY		MC_BR			MC_Vert		MC_TE							
	SDB1_IF			1_LC	SDE												
	BS_IP		BS_F7	BS_F	AY	BS_BF		BS_\								BS_TestMas	
	NI_IP		NI_F7	NI_F	AY	NI_BR		NI_\	/ert							NI_TestMas	
	NE_IP			NE_F		NE_BF		NE_\	√ert							NE_TestMas	
	PR_IP		PR_F7	PR_F		PR_BR	L I	PR_\	/ert				Guard		_Electr	PR_TestMas	
	SR_IP		SR_F7	SR_F		SR_BF	٤ - ١	SR_\	Vert							SR_TestMas	
	WI_IP		WI_F7	WI_F	YAY	WI_BF			Vert							WI_TestMas	
	WE_IP		WE_F7	WE_I	PAY	WE_B		WE_	Vert	WE_		WE_	Guard	WE	_Electr	WE_TestMas	
Environment	CB_Hall				NE_		WE_Ha		WindActi				BRMSM	on 👘	QNR	TE_alarme	
	INJ_Area			EE_R		DAQ_Ro	om 🛛 M	leteoS					innel_EN	/ L	ights	SeaActivity	
Infrastructures	ACS_CB_Hall #	ACS_TCS	S_CHIL A	CS_TB A	CS_DAQ_R	oACS_E	E_Room			ACS_INJ		S_DET		6_NE	ACS_WA	B ACS_FCI	
	UPS_TB UF	PS_CB	UPS_MC	UPS_NE	UPS_WE	IPS	FlatCl	nannel	ExistChann	< Sense	ors AC	S_WE	ACS_CB_	_CF_ACS_	COB ACS	FCEM PyHVA	
SBE	EIB				SPRB_SBE		B_LC				SN	EB_SBE	SNE	B_LC	SWEB_SE		
	SQB1_SBE			: :	QB2_SBE		SQB2_LC					CIM_LC				FCEM_LC	
TCS	NE_RH	WE_	RH S	iR_RH N	I_CO2_Las	erWI_CO	2_Laser <mark>N</mark>	I_AUX	_Laser WI_	AUX_La	<mark>ser</mark> Ch	rocc_SR	Chro	cc_PR	Chillers	TCS_Elec	
QNR	LFC		A		QNR_	GALVO	EQE	31_AC	TUATORS	(NR_SQ	Z		PLLs		SQZ_INJ	
Vacuum	LargeValves	Clea	an_Air	TubeStation	s TubeP	umps	MiniTow	ers	TurboLir	ks	SQZ		RemDryP	MP VA	C_SERVOS	5 Tiltmeter	
	Pressure	Соп	npressedAir	TowerS	ervers	TowerPur		Сгуо	Trap	02_Se			ank		HLS	Vacuum_LA	
VPM	DetectorSEnviro	o Contr	olRoom	Minitowers	IS	с	Squeez	er	Injectio	n	TCS		Suspensi	ion	Vacuum	Metatron	
	DetectorMonitor	rin <mark>.</mark> Ne	wtonNoise	DataCol	ection	Storag	e	DataA	ccess	Autom	ation	De	tChar	Cali	bration-	LLDataProd	
DAQ-Computing	Latency		Disk		Timing		'iming_rtp	ю	Timing	_dsp	E	ast_DAC		ADCs_	TE	Daq_Boxes_T	
	Domains	DMS	S_machines	olserv		rtpcs		ilSwite	hBoxes	INF_de	vices		devices	VAC.	_devices	TCS_device	
Calib_Hrec	CalNorth	CalWes	t Cali	BS C	alPR	CalSR	PCalN	orth	PCalWest	H	OFT	HOFT	Bias	NCAL	CalIN	J NoiseInje	
DetChar-Ex.Trigger		Hrec	RANGE BN					GRB	Alert					SN	Alert		

O4b Virgo status


- Rough start with a handful of new (and unrelated) hardware problems
 First two weeks: duty cycle ~60%

 - \rightarrow All fixed
- Since then (five more weeks): duty cycle much higher and still growing in average \rightarrow No hardware problem, continuous monitoring of transient issues, good weather

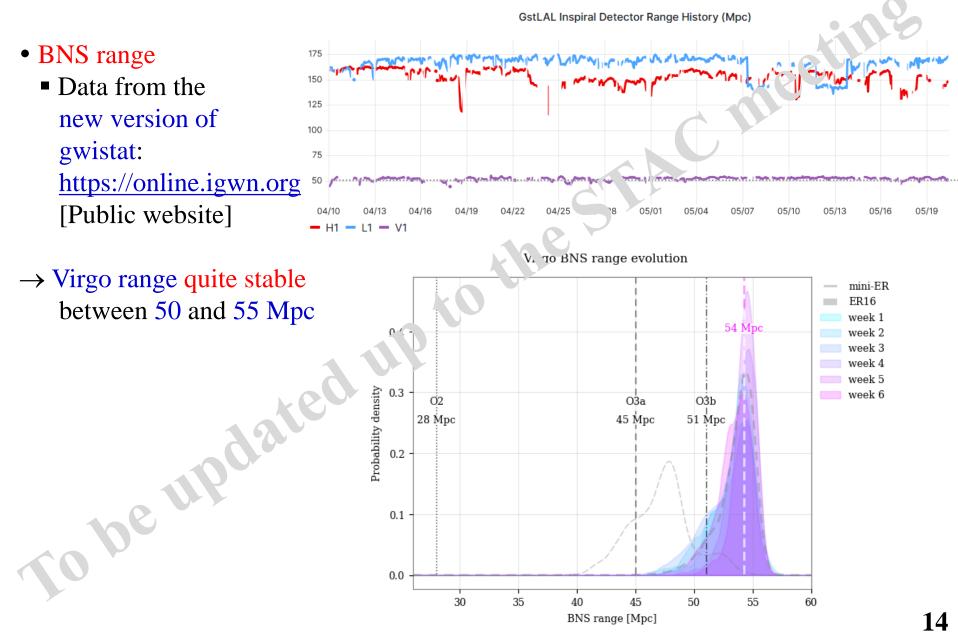
Duty cycle (average: 75.47%) for network configuration V1 1396796418 [2024-04-10 15:00:00+00:00 UTC] -> 140022002 \[2024-05-20 06:00:02+00:00 UTC]

O4b Virgo status

 \rightarrow Update Uist of detector "modes": improving our automated monitoring

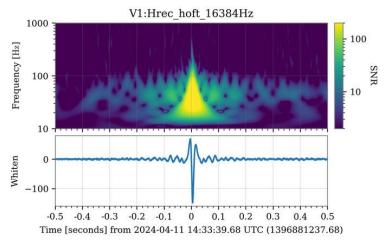
- Added ones: "Prepare Science" (goal: take data), "Bad weather" and "Earthquake"
- Detector states not specific of a given mode have been removed
 - "Locking", "Locked": not informative about what the current mode is

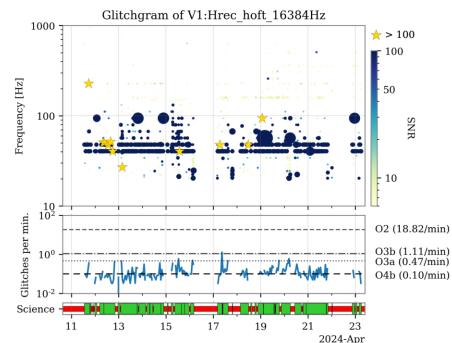
Best 7 days in O4b so far

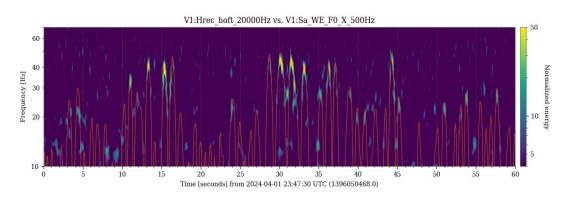

• Monday April 29th \rightarrow Sunday May 5th

Adjusting: 0.1% (0d:0h:9.7m)

Calibration: 1.8% (0d:2h:57.8m)


Weekly summary plot: 2024/04/29 00:00:00 UTC -> 2024/05/06 00:00:00 UTC -- S-events: 3 ADVOK, 1 ADVNO Science: 100.0% 60.0 50.0 40.0 30.0 20.0 Mon 2024/04/29 00:00:00 UTC -> Tue 2024/04/30 00:00:00 UTC 10.0 S240429an 0.0 Science: 47.7% Commissioning: 22.3% 60.0 50.0 40.0 30.0 20.0 Maintenance: 18.3% Prepare science: 10.3% Small contribs: 1.5% 10.0 Tue 2024/04/30 00:00:00 UTC -> Wed 2024/05/01 00:00:00 UTC S240430ca 0.0 Science: 80.1% Prepare science: 11.7% 60.0 50.0 40.0 Calibration: 8.2% 30.0 20.0 10.0 0.0 range [Mpc] Wed 2024/05/01 00:00:00 UTC -> Thu 2024/05/02 00:00:00 UTC S240501an Science: 86.0% Commissioning: 12.9% 60.0 50.0 Small contribs: 1.1% 40.0 30.0 20.0 10.0 Thu 2024/05/02 00:00:00 UTC -> Fri 2024/05/03 00:00:00 UTC 0.0 BNS Science: 92.9% Prepare science: 7.1% 60.0 50.0 40.0 30.0 20.0 Fri 2024/05/03 00:00:00 UTC -> Sat 2024/05/04 00:00:00 UTC 10.0 0.0 Science: 97.7% Small contribs: 2.3% 60.0 50.0 40.0 30.0 20.0 Sat 2024/05/04 00:00:00 UTC -> Sun 2024/05/05 00:00:00 UTC 10.0 0.0 Science: 100.0% 60.0 50.0 40.0 30.0 20.0 10.0 Sun 2024/05/05 00:00:00 UTC -> Mon 2024/05/06 00:00:00 UTC S240505av 0.0 12:00 04:00 16:00 20:00 00:00 00:00 08:00 UTC Time Science: 86.3% (6d:1h:3.4m) Commissioning: 5.0% (0d:8h:27.4m) Prepare science: 4.1% (0d:6h:58.2m) Maintenance: 2.6% (0d:4h:23.4m)


O4b Virgo status



Data quality: transient noises ("glitches")

- Reduced glitch rate compared to O3 $\rightarrow 0.10/\text{minute}$ vs 1.11/minute
- Only two known families of glitches
 - 25-minute glitches
 - Impacted Virgo data for a recent event
 - → Investigations to continue via a dedicated taskforce, now that the start of O4b is behind us
 - Scattered light
 - \rightarrow Only during bad weather

Data quality: spectral lines

• Spectral lines identification

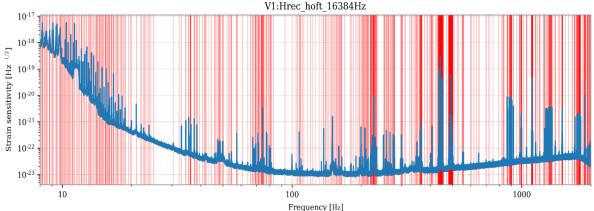
Inputs from different, complementary tools

 \rightarrow O4b Catalog in progress

C Chamels Chamels

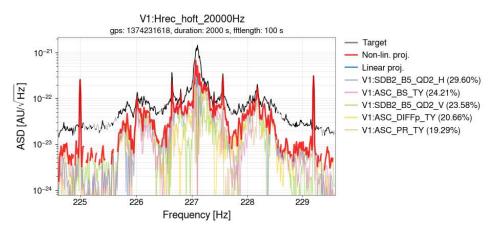
harnels

Clux here to show only to liver channels 📲 Streeting all Co.

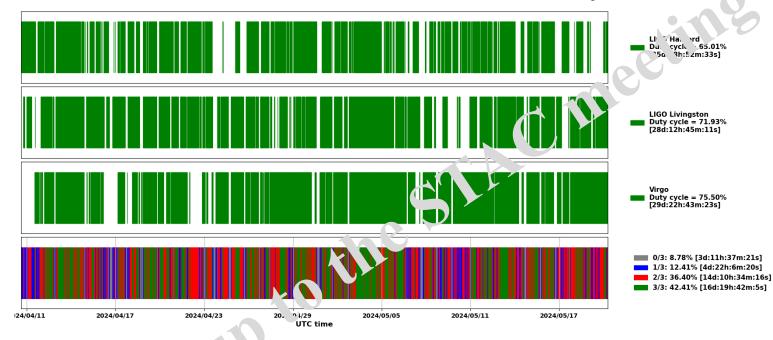

🕈 'Addive' channels are these that have been seen in the DNC within the last 54 days.

Relatives an excessence of the second as a minimal, while the contractions result for excepted (h, the provent there being used as withouts)

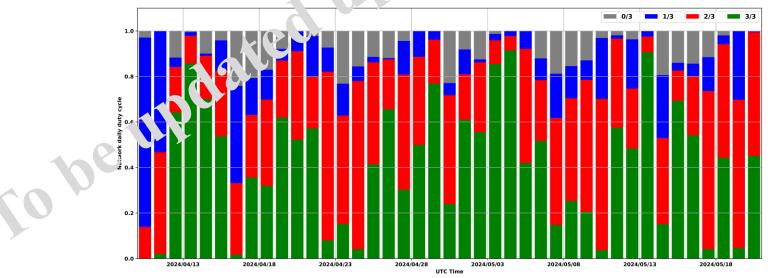
northy showing in-dice [of M

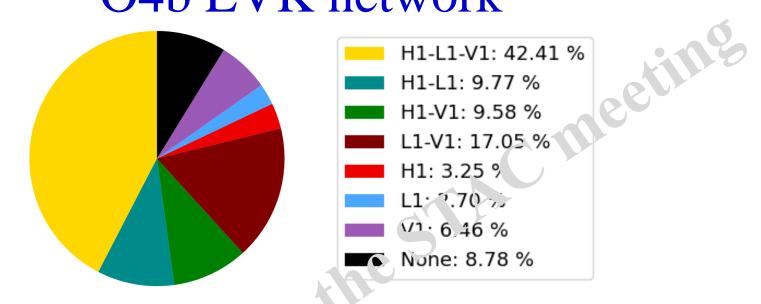

Cesr Q Filer chain

Cherrier neme	1476	Contra 1		2 Lash sann		restory
VLSIL, SIRL, SHOOLING	1	Counts	1305784610	1120859790	BS: Note expension lower centering Use Bose-Splitter minur	
VL00,00,041g.betW	10000		1208704010	1069431040	00 Borg supervise losse certaining the beam dailed at a	

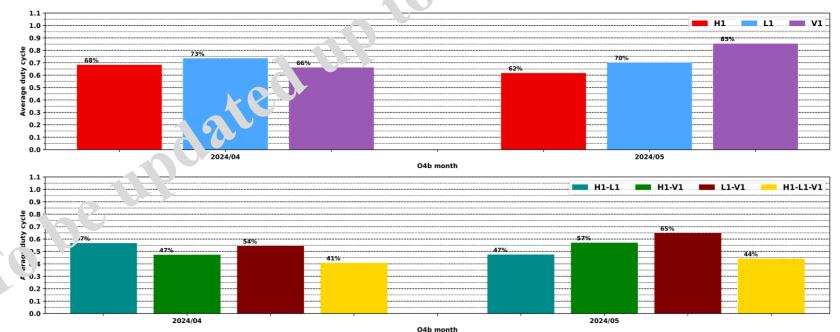


Sidebands


O4b LVK network


H1-L1-V1 network: 2024-04-10 15:00:00+00:00 UTC -> 2024-05-20 07:00:02+00:00 UTC -- science segments

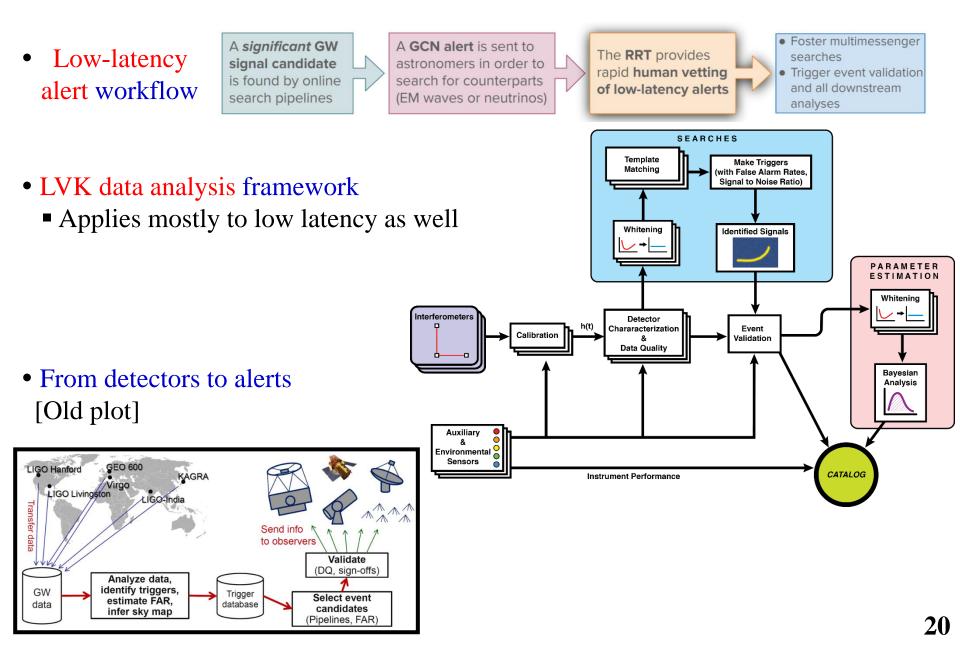
Network daily duty cycle 1396796418 [2C. 04 \ 15. \:00+00:00 UTC] -> 1400220020 [2024-05-20 06:00:02+00:00 UTC]



O4b LVK network

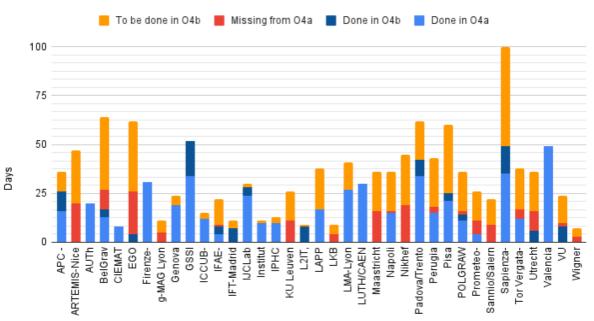
• Duty cycle

Month y ty cycles 1396796418 [2024-04-10 15:00:00+00:(2 U)] - 1400220020 [2024-05-20 06:00:02+00:00 UTC]


O4b LVK network

• "Presence" of a detector

age

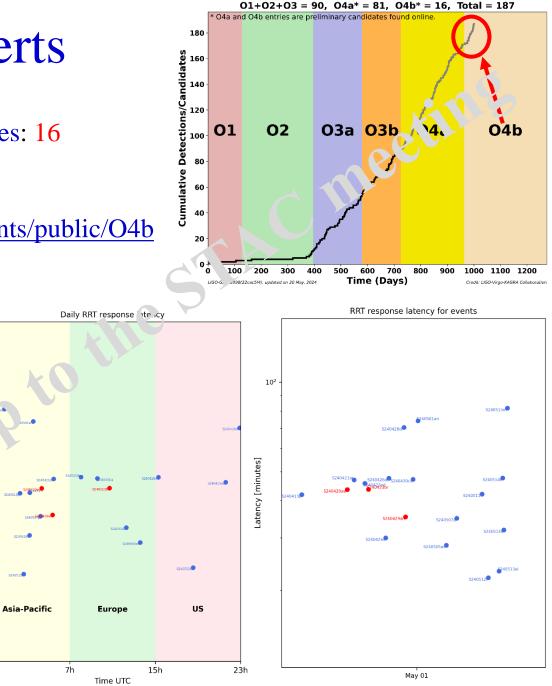

- (3-instrument duty cycle) / (2-instrument network w/o that detector my cycle)
 - \rightarrow The higher the better
 - \rightarrow Reflects both the (good) performance of that detector
 - and the (bad) performance of the other t_{1} o instruments

H1-L1-V1 network, monthly presences 1396796418 [2024-04-10 15:00:00+00:00 UTC] -> 1400220020 C24-(5-20 06:00:02+00:00 UTC] 1.1 1.0 0.9 0.8 75% 0.7 presence 0.6 0.5 0.4 0.3 0.2 2024/04 2024/05 O4b month

Rapid Response Team (RRT)

- Solid infrastructure and excellent overall performance
 - Relying on group contributions for shift coverage and mentorship of colleagues
- 93 individuals from 22 Virgo groups participated in O4a
 - 70% are Early Career Researchers: PhD and Postdocs
- 161 people on the O4b rota
 - 26 institutions
 - → Significant increase coinciding with Virgo being part of the run

Updated: May 24, 2024

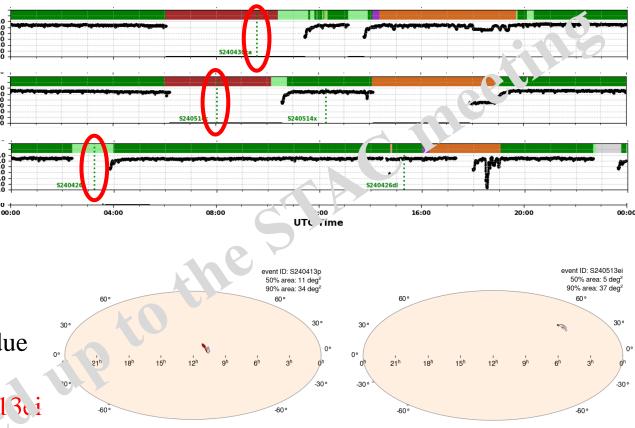

O4a: May 24, 2023 - Jan 16, 2024 (237 days). O4b: Apr 10, 2024 - Feb 28, 2025 (324 days)

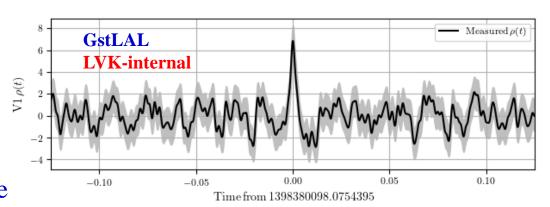
10²

atency [minutes]

23h

- O4b significant detection candidates: 16
 - 19 [total] 3 [retracted]
- \rightarrow <u>https://gracedb.ligo.org/superevents/public/O4b</u>
- Rapid Response Team (RRT)
 - Good alert processing and vetting by level-0 RRT (Lv0) shifters → A bit slow sometimes
 - Good level-1 expert (Lv1) coverage
 - Virgo Lv0 sh^{*}træs schedule filled uptil August included
 → C^{*}c på response from
 - Virgo groups overall


- 13/16 (81%) with Virgo
 - 2 during maintenance


60.0 50.0 40.0 30.0 20.0 10.0 0.0

50.0 40.0 30.0 20.0 10.0 0.0

> 60.0 50.0 40.0 30.0

- 1 while relocking in between two Science segments
- Skymaps benefit from the addition of Virgo data to the LIGO trigger
 - S240413p high-profile due to its good localization
 - → S240511i and S240513ci well-localized as vieii
- S240428dr
 - Trigger: H. t.fc.rd-single
 - L'vingston down
 - Virgo SNR: 6.9
 - → A record for Virgo if event confirmed offline

- Good Data Quality Report (DQR) performance overall
 - Tool used to vet data quality for all event candidates in particular in low latency
 - \rightarrow No problem with data availability at EGO, nor data transfer in low latency
- Two problems identified since the beginning of O4b
 - → Mitigation in place: very quickly
 - \rightarrow Proper fix taking time: requires code writing, testing and update to production
 - Need to protect from an online pipeline misbehaving and sending many alerts passing the DQR triggering cuts in a short amount of time
 - → Filesystem stress at EGO may have lead to one control loss: data not flowing properly internally
 - Currently, each alert is processed independently from all the others
 - ◆ LIGO not willing to address that problem in the common part of the framework
 → To be done at the Virgo DQR level
 - LVK code used to transfer DQR results to the central CIT location to be improved, to avoid interference between DQRs running in parallel on the same event
 - \rightarrow 1 occurrence: prevented transfers from EGO to CIT during 10 minutes
 - No impact on the DQR running at EGO, only on the results transfer
 - Code fixed, to be included in a future production release of the framework 24

To watch out: lessons learned so far

- Low-latency h(t) reconstruction at EGO for online gravitational-wave searches
 - Need to provide h(t) frames in a timely way even when the detector is down
 Direct (thus sensitive) interface with LIGO through the low-latency pipelines
 - Monitor latency + study its fluctuations + mitigate/fix their causes
 - Check low-latency h(t) frames when leaving the DAQ
 - \rightarrow Fix their contents (by putting down all bits of the state vector) if needed
 - Enforce rules to act on that (and other) critical part(s) of the Virgo framework
 - Any work should be announced and cleared by control room / coordinators before it may start
 - Use test systems/dataflows to not interfere with production Hrec
 - Once the activity is completed, monitor the system until back to nominal Science data taking
- Follow-up on errors done while steering Virgo
 - Update documentation, improve procedure, implement protections, etc.
- Complexity of the low-latency system
 - \rightarrow Difficulties to implement changes coherently

Computing update

- Low latency data distribution
 - Up and running in production mode using jointly developed <u>lldd</u> library
 - <u>Spikes in latency in low latency Virgo data</u> are being addressed
 - Virgo frames missing strain data solution being tested into the offline End-to-End Archival data replay setup
- Raw data transfer
 - Data are flowing into the dedicated O4b directories at CNAF and CCIN2P3 with good performances. Common efforts to reduce the raw data flux have helped in achieving the result
- Bulk data distribution
 - Prepared OSDF/CVMFS Louvain origin infrastructure working as expected and transitioned successfully to Rucio technology for aggregated h(t) data transfer
 - After dedicated tests with the Calibration group, ready to support the Analysis Ready files (for offline analyses) transfer, using the same infrastructure
- Low Latency pipelines
 - MBTA and cWB are running nominally and contributing to events discovery
- CVMFS-based file network system at EGO to improve performance

DetChar group status update

- Organization: a solid infrastructure inherited from O3 plus some novelties
 - Weekly meeting

- Wiki pages
- Two, recently started, gitlab projects
 - <u>Tasks</u>: monitor ongoing activities and ping DetChar intervention
 - → Foster interactions among Data Analysis and Commissioning groups
 - <u>Help</u> for newcomers: request assistance from experts or discuss common issues
- Composition
 - Based on Virgo Member Database does not necessarily reflect reality (worse!?)
 - 27 members, for a total of 7.25 SVAC
 - \rightarrow 0.27 SVAC/person 0.47 in Data Analysis, 0.24 in post-O5 R&D
 - 17 different institutions : 1.6 people/institution
 - \rightarrow Reduced knowledge transfer and limited mentoring possibilities
- O4b core activities
 - Continue the support to Commissioning and detector Operations
 - Monitoring and investigation of known issues
 - Prompt investigation of new noise sources
 - Data-quality products for low-latency and offline searches including final dataset
 - Event validation jointly with LIGO (and KAGRA)

Other news

- Live operator report from ongoing shift now available on the logbook
 - Temporary solution for now
 - → Work in progress towards a more permanent one

Virgo Runs (O4b)
<u>irace</u> - 8:09 Tuesday 07 May 2024 (64186) %
Operator Report - Morning shift
DRAFT - REPORT IN PROGRESS - will be finalized at the end of the shift
Upon arrival, I found the ITF locked and in SCIENCE mode.
At CORE LITS I and the MAINTENIANCE media

- Calibration and Hrec approved by Virgo review committee for O4b
 - Following provisional sign-off for ER16
- Rhys Poulton (EGO) replacing Duncan MacLeod (LIGO) as chair of the Software Control Change Board (SCCB)
 - \rightarrow Rhys and Duncan swapping their positions in the SCCB
 - Need to follow up closely the possible evolution of the SCCB
 - "Friction" (sic) added to the system with the goal of limiting mistakes
 - Tendency to make the SCCB procedure more invasive, more complex and compulsory for any software change
 - \rightarrow Need to find (and keep) a balance between efficiency and burden
- 7th GWOSC workshop took place mid-April
 - <u>https://gwosc.org/odw/odw2024</u> + Lessons learnt: <u>https://dcc.ligo.org/G2401025</u> 28

Outlook

- Virgo started O4b on time and is committed to be part of the whole data taking period
 - Discussions have started about a possible extension of the run
 - \rightarrow May impact the schedule of tests to be done on a stable O4b-optimized detector
- Excellent duty cycle so far
 - Virgo Science data available for most low-latency alerts
 - \rightarrow Improve sky localization
 - Optimized LVK / run + commissioning planning to maximize 3-detector uptime
 - "Drawback": no detector observing up to $\sim 10\%$ of the time
- Focus on monitoring performance and improving things where possible
- All run-related working groups performing well
- Personpower remains limited but some balance has been found
 - Focus on critical areas
 - Priorities driven by issues identified and investigations done during the run
- \rightarrow We'll see what Summer and Fall bring us, but Spring doesn't look bad so far!