### Run coordinator report

Nicolas Arnaud (nicolas.arnaud@ijclab.in2p3.fr)

Laboratoire de Physique des Deux Infinis Irène Joliot-Curie (Université Paris-Saclay & CNRS/IN2P3) European Gravitational Observatory

EGO Council open session Nikhef – July 2<sup>nd</sup>, 2024

VIR-0585A-24









#### Foreword

• 21 years ago...



#### Summary

- Many interferometers are currently under developpement
   → Worldwide network in the future
  - ✓ | All instruments work already although they did not prove yet there can fulfill their requirements
- → Control of complex optical schemes with <u>suspended</u> mirrors
  - ✓ All sensitivities need to be <u>significally improved</u> to reach the amplitude of GW theoretical predictions
- Many different GW sources
- ⇒ various data analysis methods in preparation
- In the two last years, the Virgo experiment became real
  - ✓ The different parts of the experiment work well together
  - ✓ Successful commissioning of the CITF
  - $\checkmark$  2003: CITF → Full Virgo
  - ✓ First 'physically interesting' data expected for 2004!?!?!

### O4b: setting the stage

- Planning
  - O4b started on Wed. April 10<sup>th</sup> at 1500 UTC
  - Recently extended up to June 9<sup>th</sup>, 2025: from "at least 10" to 14 months
    - → Longest continuous data taking period in Advanced detectors era
      - Various implications for Virgo, but no showstopper
- Virgo data usage in low latency
  - Not for triggering: sensitivity gap + computing resources
  - ☑ For sky localization: a third detector can significantly reduce the skymap size
    - → Virgo data vet in low latency exactly like LIGO data
      - Virgo Data Quality Report framework works fine and is integrated with LIGO
    - → O4b overall strategy: maximize 3-detector uptime
      - Requires more, continuous, coordination at the LVK level
        - In particular: align known, weekly recurring, downtimes
- Dual O4b coordination foreseen by the new Virgo Bylaws
  - Run coordinator

  - **Smooth management: regular interactions** Commissioning coordinator
     and quick info transmission both ways
- → More / complementary info in Michal Was' talk next in the agenda

### Run coordination: from Virgo to LVK

Joint LVK Rapid-Response Team (RRT)



- Virgo Operations division approved at June 2024 VSC
  - → Twofold goal
    - Help coordinating work within Virgo: improve interfaces and liaisons
    - Have more weight in discussions at LVK level

### Day to day operations

- EGO operations team
  - 7 operators + 1 manager
  - **3** 8-hour shifts / day (7:00 / 15:00 / 23:00) 7 days / week
    - → Full 24/7 coverage in control room
  - Steer the detector
  - Support subsystems and working groups
    - → Training sessions organized prior to the start of O4b
  - First level of response in case of alarms on the Detector Monitoring System
- Daily meetings Monday to Friday in the control room
- Weekly Virgo operations division meetings to be (re)started soon
- LVK Organization
  - Weekly Operations meeting
  - Weekly site advocates meeting
  - Monthly joint coordinator meeting with RRT
  - Monthly joint coordinator meeting with data analysis and RRT

→ Many working group meetings, LVK mailing lists and chat channels

 $\rightarrow$  Virgo: lead run coordinator  $1/3^{rd}$  of the time, DetChar expert 50% of the time



[Open]

### O4b Virgo status

- Rough start with a handful of new (and unrelated) hardware problems
  - First two weeks: duty cycle ~60%
  - $\rightarrow$  All fixed
- Since then (two months): duty cycle much higher and still growing in average
  - → No hardware problem, continuous monitoring of transient issues, good weather

Duty cycle (average: 80.15%) for network configuration V1 1396796418 [2024-04-10 15:00:00+00:00 UTC] -> 1403902820 [2024-07-01 21:00:02+00:00 UTC]



### O4b Virgo status

• Duty cycle summary



- → Planned weekly downtimes add to about 10% of the wall-clock time
- → With ~80 days of run and a duty cycle of ~80%, more than 4 days of continuous operations needed to gain 1% of duty cycle

### A typical O4b week

- High duty cycle: > 80%
- Expected downtime pattern: Monday, Tuesday, Thursday and Saturday



### O4b Virgo status

- BNS range
  - Data from the new version of GWIstat: <u>online.igwn.org</u> [Public website]



→ Virgo range quite stable between 50 and 55 Mpc



## Data quality: transient noises ("glitches")

- Reduced glitch rate compared to O3
  - $\rightarrow$  0.10/minute vs 1.11/minute
- Only two known families of glitches
  - 25-minute glitches
    - Impacted Virgo data for a recent event
    - → Investigations to continue via a dedicated taskforce, now that the start of O4b is behind us
  - Scattered light
    - → Only during bad weather







#### O4b LVK network

#### Duty cycle



### O4b LVK network





Monthly duty cycles 1396796418 [2024-04-10 15:00:00+00:00 UTC] -> 1403902820 [2024-07-01 21:00:02+00:00 UTC]



### O4b LVK network

- "Presence" of a detector:
  - (3-instrument duty cycle) / (duty cycle of the 2-instrument network w/o that detector)
    - $\rightarrow$  The higher the better
    - → Reflects both the (good) performance of that detector and the (bad) performance of the other two instruments





### Public alerts

- O4b significant detection candidates: 34
  - 39 [total] 5 [retracted]
- → <a href="https://gracedb.ligo.org/superevents/public/O4b">https://gracedb.ligo.org/superevents/public/O4b</a>
- Rapid Response Team (RRT)

LIGO-G24xxxxx (26b183c6), updated on 25 June, 2024



Hour of the Day, UTC

Credit: LIGO-Virgo-KAGRA Collaboration

LVK Public Alerts by Hour of the Day (O4b)





#### Public alerts

- 27/31 (87%) with Virgo data available
  - 4 missed: 3 during Virgo maintenance slots (4 hours on Tuesday mornings)
    - + 1 while recontroling the detector in between two Science segments
- Skymaps benefit from the addition of Virgo data to the LIGO trigger
  - Impressive improvement for loud events with favorable "source" sky location





- S240428dr
  - Trigger: Hanford-single
    - Livingston down
  - Virgo SNR: 6.9
    - → A record for Virgo if event confirmed offline



### Rapid Response Team highlights

- Rapid Response Team
  - 3-tier system: Lv0 (on shift)  $\rightarrow$  Lv1 (experts)  $\rightarrow$  Lv2 (full team)
  - Coordination shared by geographical regions (by collaborations in practice)
    - ◆ Europe (+ Africa): Francesco DR for Virgo
      - $\rightarrow$  1/3<sup>rd</sup> of the time since O4a started
    - ◆ Asia/Pacific: KAGRA
    - ◆ Americas: LIGO
- Solid infrastructure and excellent overall performance
  - Relying on group contributions for shift coverage and mentorship of colleagues
- 93 individuals from 22 Virgo groups participated in O4a
  - 70% are Early Career Researchers: PhD and Postdocs
- 161 people on the O4b rota from 26 institutions
  - → Significant increase, coinciding with Virgo being part of the run
- Challenge ahead of us: keep that commitment high until the end of O4b
  - → Will require participation from all Virgo groups
  - → Shifts to be taken regularly during the run to ease global management

### DetChar highlights

- Organization: solid infrastructure inherited from O3 plus some novelties
  - Weekly meeting

- Wiki pages
- Two, recently started, gitlab projects
  - ◆ <u>Tasks</u>: monitor ongoing activities and ping DetChar intervention
    - → Foster interactions among Data Analysis and Commissioning groups
  - Help for newcomers: request assistance from experts or discuss common issues
- O4b core activities
  - Continue the support to Commissioning and detector Operations
    - Monitoring and investigation of known issues
    - Prompt investigation of new noise sources
  - Data-quality products for low-latency and offline searches including final dataset
  - Event validation jointly with LIGO (and KAGRA)
- Personpower: still the main issue
  - Recent update of the Virgo Member Database
    - → Size of the group decreased but probably more realistic now
  - Individual commitment lower than in other Virgo activities
  - DetChar people scattered in many groups
  - → Reduced knowledge transfer and limited mentoring possibilities

### Calibration and h-reconstruction highlights

- Improved calibration and h-reconstruction methods
  - Uncertainties reduced and better estimated, bias accurately controlled
  - Better noise subtraction methods
  - Newtonian calibrators are complementing the photon calibrators
- Online monitoring + regular automated calibrations both daily and weekly
- Preparation of the (offline) Analysis Ready frames
  - Improved uncertainties compared to online h(t)
  - Option to update bias
  - First month of O4b to be reprocessed then only if needed
  - → Joint activity with DetChar
- Publications in preparation
- R&D activities focusing on h(t)-reconstruction in the time domain
  - Potentially a much lower latency

### Low latency highlights

- Virgo technical contributions limited by lack of personpower
  - LVK working group co-chair
  - Co-chair of the low-latency alert infrastructure review committee
  - → Low-latency framework is extremely complex
- Various ongoing developments
  - But difficult (and very time-consuming) to complete these projects and get ready to deploy them in production
  - Hard to find the balance between the will to use new functionalities and the need to protect the framework against unwanted consequences of updates
  - → Ongoing effort at the LVK level to document better and clarify the procedures
    - More versatile, less monolithic
- Virgo pipelines or pipelines with significant Virgo contributions all work well
  - cWB, MBTA and PyCBC Live
- 3 significant gravitational-wave alerts / week
  - 9 subthreshold events / day
- Latency of the automated alerts
  - 20 to 60 seconds for the first preliminary About 5 minutes for the second one

# Computing highlights

- Production software frozen before the start of O4b
  - Limited improvements and developments as needed
- Low latency data distribution up and running in production mode
  - Low-latency h(t): focus on latency spikes and monitoring
- Raw data transfer: data flowing with good performances at CNAF and CCIN2P3
  - → Common efforts to reduce the raw data flux have helped in achieving this result
- Bulk data distribution
  - Prepared OSDF/CVMFS Louvain origin infrastructure working as expected and transitioned successfully to Rucio technology for aggregated h(t) data transfer
  - After dedicated tests with the Calibration group, ready to support the Analysis
    Ready files (for offline analyses) transfer, using the same infrastructure
- Low Latency pipelines
  - MBTA and cWB are running nominally and contributing to events discovery
- CVMFS-based file network system at EGO to improve performance
- Offline computing: nothing critical no major resource contention seen nor expected
  - Data distribution infrastructure evolution  $\Rightarrow$  shift towards distributed computing  $_{20}$

### Open data highlights

- 7th GWOSC workshop took place mid-April
  - https://gwosc.org/odw/odw2024
    - → Internal "lessons learnt" document
- Data releases
  - To accompany the GW230529 article
  - Preparation of the O4a data release and associated article
- Technical developments
  - Internal to ease the preparation of the next catalog issue GWTC-4
  - GWOSC website
  - Desktop app
  - . . .
- Discussion about whether the GWOSC website should host non-LVK catalogs
- → Small working group but very active, and with a lot of projects

#### To watch out: lessons learned so far

- Low-latency h(t) reconstruction at EGO for online gravitational-wave searches
  - Need to provide h(t) frames in a timely way even when the detector is down
    - → Direct (thus sensitive) interface with LIGO through the low-latency pipelines
  - Monitor latency + study its fluctuations + mitigate/fix their causes
  - Check low-latency h(t) frames when leaving the DAQ
    - → Immediate alert if latency too high or frame contents corrupted
  - Enforce rules to act on that (and other) critical part(s) of the Virgo framework
    - Any work should be announced and cleared by control room / coordinators before it may start
    - ◆ Use test systems/dataflows to not interfere with production Hrec
    - Once the activity is completed, monitor the system until back to nominal Science data taking
- Follow-up on errors done while steering Virgo, software bugs or features
  - Update documentation, improve procedure, implement protections, etc.
- Complexity of the low-latency system
  - → Difficulties to implement changes coherently

### **Outlook**

- Virgo started O4b on time and is committed to be part of the whole data taking period
  - The run has been extended by 4 months
    - → Manageable but complicated by the personpower limitation
- Excellent duty cycle so far
  - Virgo Science data available for most low-latency alerts
    - → Improve sky localization
  - Optimized LVK / run + commissioning planning to maximize 3-detector uptime
    - ◆ "Drawback": no detector observing up to ~10% of the time
- Focus on monitoring performance and improving things where possible
- All run-related working groups performing well
- Personpower remains limited but some balance has been found
  - Focus on critical areas
  - Priorities driven by issues identified and investigations done during the run
- → We'll see what the coming months bring us, but Spring hasn't been bad!

## LVK planning



- Downtimes aligned as much as possible among the three detectors
  - Priority: 3-detector data taking



#### **Downtimes / week**

- Maintenance: 4 hours (2.4%)
- Calibration: 3 hours max. (1.8%)

- Commissioning: 8.5 hours max. (5.1%)
- **Injections:** 0.5 hour max. (0.3%)
- $\rightarrow$  Up to 10% of duty cycle

### Data quality: spectral lines

- Spectral lines identification





- Characterization of bilinear noise
  - Sidebands



#### Public alerts

 Low-latency alert workflow



- LVK data analysis framework
  - Applies mostly to low latency as well

From detectors to alerts[Old plot]



