Neutrinos with IceCube

Anna Franckowiak on behalf of the IceCube Collaboration

Data Analysis for Multi-Messenger Data Analysis, Oct. 22, 2024

Multi-messenger Astronomy

Volume: 1km³

Completed and taking data since Dec 2010

How are neutrinos produced?

MeV neutrinos from nuclear processes, (inverse) beta decay

TeV-PeV neutrinos from cosmic-ray "beam dumps"

Event Signatures

"shower" events: neutrinos interacting inside the detector

"track" events: muon neutrinos

filtered by the Earth

Diffuse Flux discovered!

First detection of galactic plane neutrino flux thanks to gamma-ray template fit, ~10% of diffuse flux

Only possible after application of machine learning algorithms

Weight

- Look for hotspots in the neutrino sky → identify source candidates
- 2. Start from EM source catalog \rightarrow look for neutrinos from source population
- Focus on high-energy neutrinos with high signal probability → look for EM counterparts

- Look for hotspots in the neutrino sky
 → identify source candidates
- Start from EM source catalog → look for neutrinos from source population
- Focus on high-energy neutrinos with high signal probability → look for EM counterparts

- Look for hotspots in the neutrino sky → identify source candidates
- 2. Start from EM source catalog → look for neutrinos from source population
- Focus on high-energy neutrinos with high signal probability → look for EM counterparts

Extragalactic Sources

110 sources based on gamma-ray properties and weighted with neutrino search sensitivity

Extragalactic Sources

110 sources based on gamma-ray properties and weighted with neutrino search sensitivity

Most significant candidate: **NGC 1068 (M77), 4.2σ**

- Nearby (M=14Mpc) Seyfert 2 galaxy
- AGN and star-forming activity

Combining gamma-ray source list with neutrino data allowed neutrino source detection

Extragalactic Sources

110 sources based on gamma-ray properties and weighted with neutrino search sensitivity

Most significant candidate: **NGC 1068 (M77), 4.2σ**

- Nearby (M=14Mpc) Seyfert 2 galaxy
- AGN and star-forming activity

Combining gamma-ray source list with neutrino data allowed neutrino source detection

Lack of gamma rays places neutrino production site in the heart of the galaxy

- Look for hotspots in the neutrino sky → identify source candidates
- Start from EM source catalog → look for neutrinos from source population
- Focus on high-energy neutrinos with high signal probability → look for EM counterparts

Neutrinos as Triggers

Public alerts since April 2016

- Single high-energy muon track events (> ~100TeV)
- "Gold" ("Bronze") alert stream 10/yr (30/yr), 50% (30%) "signalness"
- Median latency: 30 sec
- Distributed through GCN

Goal: Find electromagnetic counterpart

RUB

IceCube ApJS 269 (2023)

Garrappa et al. A&A, 687 (2024) Page 25

RUB

IceCube ApJS 269 (2023)

Source Candidates: TXS 0506+056

gamma-ray flare increases significance to 3o

RUB

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Source Candidates: Tidal Disruption Event AT2019dsg

Chance coincidence: 0.2% to find a TDE that bright (including trials)

Two more candidates → 3.7 sigma

S. Reusch et al. PRL 2022, S. Van Velzen et al. MNRAS 529 (2024)

RUB

IceCube Realtime System

TeV Neutrinos and Gravitational Waves: BNS merger

GW170817: Search for neutrinos in ANTARES, Auger and IceCube data in +/-500 sec

TeV Neutrinos and Gravitational Waves: BNS merger

Non-observation is consistent with off-axis short GRB scenario

RUB

LIGO, Virgo, Auger, ANTARES, IceCube, ApJ 850 (2017)

TeV Neutrinos and Gravitational Waves: BNS merger

Non-observation is consistent with off-axis short GRB scenario

Neutrino could help to constrain direction and teach us about the GW source environment

RUB

LIGO, Virgo, Auger, ANTARES, IceCube, ApJ 850 (2017)

How are neutrinos produced?

MeV neutrinos from nuclear processes, (inverse) beta decay

TeV-PeV neutrinos from cosmic-ray "beam dumps"

Detectors participating in SNEWS

Next Generation at the South Pole – two tier process

IceCube Upgrade – in progress

- Focus on improved calibration and low energy neutrino physics
- Test new technologies
- Deployment in 2025/26 polar season
- Ice is stable → reprocess decade+ of neutrinos with improved analyses and systematics

Next Generation at the South Pole – two tier process

IceCube Upgrade – in progress

- Focus on improved calibration and low energy neutrino physics
- Test new technologies
- Deployment in 2025/26 polar season
- Ice is stable → reprocess decade+ of neutrinos with improved analyses and systematics

IceCube Gen2

- 8-10 x larger optical Cherenkov detector: Neutrino astronomy and multimessenger astrophysics
- Askaryan radio detector array: Probe neutrinos beyond EeV energies
- Surface particle detector: CR physics and veto capabilities

IceCube-Gen2 <u>TDR</u> Page 36

Benefit of Multiple Neutrino Detectors

Summary

RUB

IceCube-Gen2 time line

202	2 2023	2024	2025	2026	PY 1	PY 2	PY 3	PY 4	PY 5	PY 6	PY 7	PY 8	PY 9	PY 10
IceCube Upgrade	🜟 IceCube Up	grade Rebase	line	📕 Install 7 Up	grade Strings									
Detector Construction						-		_	Radio Sta	ition Const	truction	Optical Mc	odule Produ	iction
String Installation					Prepare Dr	ill 📁	3 Strings	4	16	20	21	21	21	14
Surface Array Installation					5 Station	is 📕	6	16	22	23	21	23	14	
Radio Installation						20 Sta	tions 📰	50	58	67	67	69	30	

Other neutrino source candidates

RUB

ZTF Follow-up Pipeline

Reject stars, planets, artifacts, asteroids

 high-energy neutrino alert arrives 2. Observe with ZTF

- - 3. Follow-up with AMPEL

Nordin et al., A&A 631, A147 (2019)

4. Trigger further follow-up observations

Reject unrelated transients (e.g. Type Ia Supernovae)

IceCube Science 380 (2023)

Complete Multi-wavelength data of NGC 1068

IceCube Science 378 (2022)

Supernova Stacking

Similar searches planned for FBOTs and other source classes. Input from theory needed

IceCube ApJL 949 (2023)

R. Stein, S. Reusch, AF et al. MNRAS 521 (2023)

Radio Data reveal long-lasting activity of central engine

Neutrino Production in TDEs

Soft X-ray TDEs

50

Hayasaki, Nature Astronomy 2021

Two more TDE candidates!

First hint of neutrino production in TDEs → Very efficient neutrino production in TDEs compared to AGN?

Dust echos

RUB

S. Van Velzen et al. MNRAS 529 (2024)

Comparison of Tywin, Bran & Lancel

	AT2019dsg	AT2019fdr	AT2019aalc		
TDE	yes	likely	?		
Peak Luminosity	$3.5 \times 10^{44} \mathrm{erg s^{-1}}$	$1.4 \times 10^{45} \mathrm{erg} \mathrm{s}^{-1}$?		
Radio	evolving	non-evolving	detected		
UV	very bright	bright	?		
X-ray	early, soft spectrum	late, soft spectrum	soft spectrum		
Dust echo	very strong	strong	very strong		
Neutrino delay	~ 5 months	~ 10 months	~ 5 months		
nu production possible?	yes	yes	?		
			∑		

 $p = 2 \times 10^{-4} (3.7 \sigma)$

TDE AT2019dsg / "Bran Stark" coincident with 200 TeV Neutrino IC191001A

Neutrino Astronomy with IceCube Gen2

Precision measurement of the spectrum from 10 TeV - 100 PeV (up to 10 EeV with Gen2 Radio)

>1 high-energy neutrino / year from gamma-ray blazars

Radio emission of showers in dense media What are we looking for?

- Askaryan effect: Charge accumulation in the shower front gives rise to a changing current, which gives rise to radio emission
- Emission is coherent at frequencies corresponding to the size of the shower
- Index of refraction >> 1, emission strong on the Cherenkov cone, travel on nonstraight lines with changing n
- Signals contain information in amplitude, frequency and polarisation

Gamma-Ray Bursts (GRBs)

Gamma rays and X-rays tell us where and when to look for neutrinos

Prompt emission of > 800 GRBs correlated with IceCube data → no excess found

Precursor and afterglow searches in preparation

GRBs contribute less than 1% to observed diffuse neutrino flux. Potential large population of nearby low-luminosity GRBs not constrained

Radio-loud AGN

Correlation with VLBI-flux-density limited sample of AGN

Correlation of radio-bright AGN with IceCube neutrino alerts at chance coincidence of 0.2%

Plavin et al., ApJ 894 (2020), Plavin et al. 2020 arXiv:2009.08914

Radio-loud AGN

Correlation with VLBI-flux-density limited sample of AGN

Correlation of radio-bright AGN with IceCube neutrino alerts at chance coincidence of 0.2%

Plavin et al., ApJ 894 (2020), Plavin et al. 2020 arXiv:2009.08914

Are there more Neutrinos from this Source?

Is there also a Gamma-ray Flare?

RUB

Modeling of 2014/15 neutrino flare

neutrino luminosity is ~4 times higher than gamma-ray luminosity → challenge for models

see e.g. Rodrigues et al. ApJL 874 2019, A. Reimer et al. ApJ 881 2019, F. Halzen et al. ApJL 874 2019

Simple one-zone hadronic models violate X-ray constraints → More complex models needed

Gao et al., Nature Astronomy 2018, Keivani et al., ApJ, 2018, MAGIC Coll., ApJ, 2018, Cerruti et al. MNRAS 2018,

RUB

Does the population of Seyferts produce Neutrinos?

Seyfert Stacking

Assumption: Neutrino production in disk corona, intrinsic X-ray flux (2–10 keV) as proxy for neutrino emission

No significant emission is found in the stacking search excluding NGC 1068.

Seyfert Catalog Search

No assumption about neutrino emission model

Two more source candidates at 2.5σ and 2.1σ level

RUB

IceCube arXiv:2406.07601, see also Neronov et al. PRL 132 (2024) 10, 101002

Connection of Seyferts and Blazar neutrino candidates?

Intrinsic (unabsorbed) luminosity

Scaling between neutrinos and intrinsic hard X-ray flux for Seyfert and blazar neutrino source candidates?

E. Kun et al. https://arxiv.org/abs/2404.06867

Model of NGC 1068 (M77)

RUB

Eichmann et al. ApJ 939 (2022) 43, Inoue et al. ApJL 891 (2020), Fang et al. ApJ 956 (2023), ...