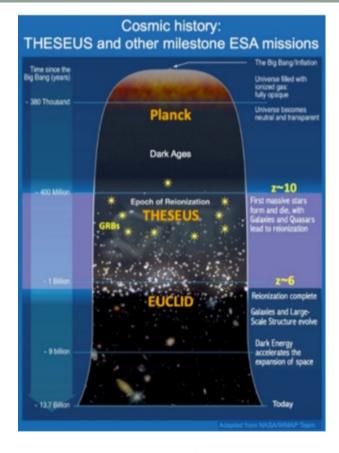


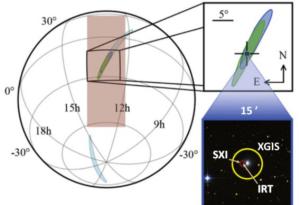
G. Stratta GU Frankfurt,INAF/IAPS *on behalf of the THESEUS international collaboration*

https://theseus.astro-ge.ch/

AHEAD2020 - EGO 21-23 Oct 2024

 THESEUS is a mission project which is now participating to the 7th ESA call for medium size mission (expected launch on 2037)

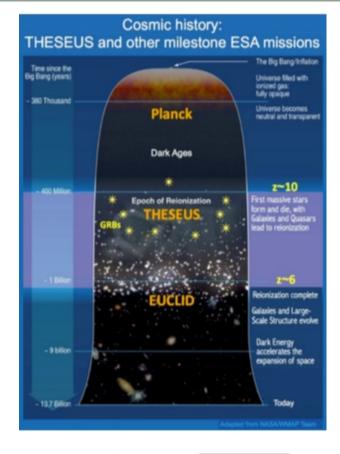

Payload consortium: Italy, Germany, UK, France, Switzerland, Spain, Poland, Denmark, Belgium, Czech Republic, The Netherlands, Norway, Slovenia, Ireland (+ Hungary?)

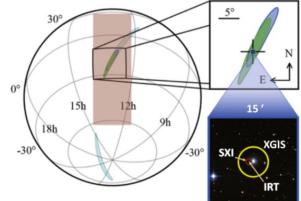

Leads: L. Amati (INAF - OAS Bologna, Italy, lead proposer), A. Santangelo (Un. Tuebingen, D), P. O'Brien (Un. Leicester, UK), D. Gotz (CEA-Paris, France), E. Bozzo (Un. Genève, CH)

THESEUS Core science

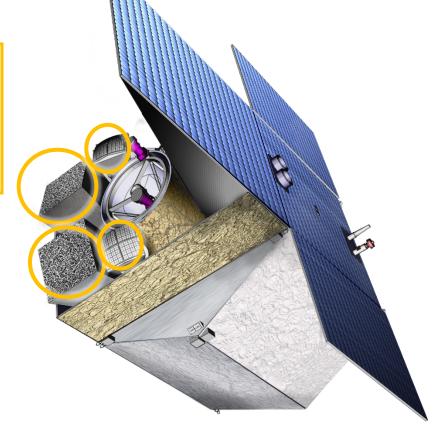
Investigating the first billion years of the Universe through highredshift GRBs

Providing a substantial advancement of multi-messenger and time-domain astrophysics

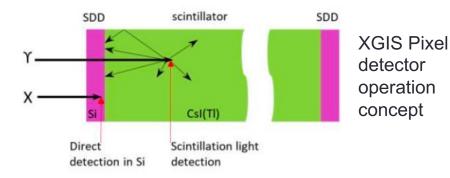


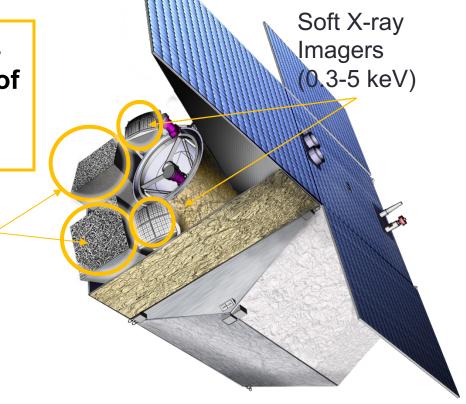


THESEUS Core science


Investigating the first billion years of the Universe through highredshift GRBs

Providing a substantial advancement of multi-messenger and time-domain astrophysics





> X-gamma-ray Imager Spectrometers (2 keV – 1 MeV)

> $0.5 \text{ sr} - 31 \times 61 \text{ deg}^2$ 2 sr (2–150 keV) – 117 × 77 deg² 4 sr (>150 keV)

Soft X-ray

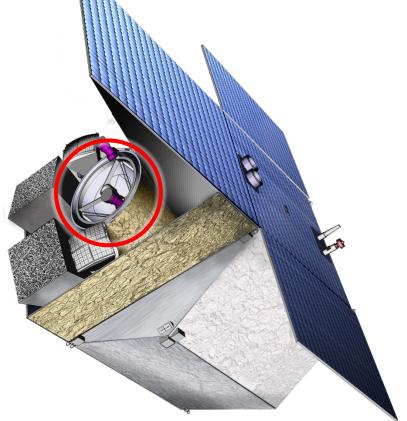
0.3-5 keV)

Imagers

SXI positional accuracy (0.3–5 keV, 99% c.l.)

XGIS FoV ($\geq 20\%$ efficiency)

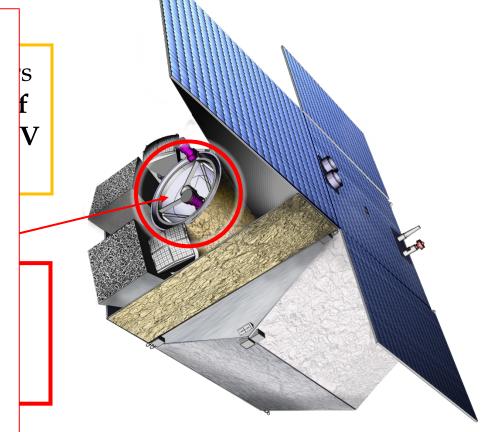
SXI FoV


 \leq 2 arcmin

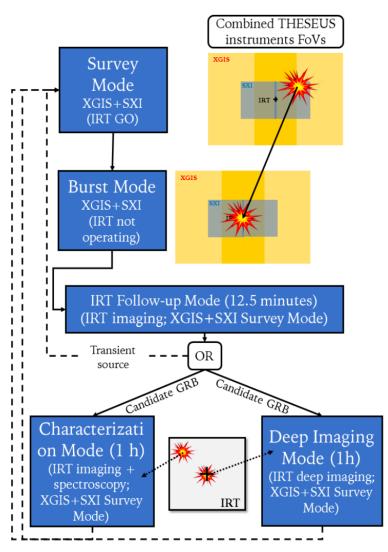
XGIS positional accuracy (2–150 keV, 90% c.l.)

 \leq 7 arcmin (50% of triggered short GRBs) \leq 15 arcmin (90% of triggered short GRBs)

 On-board autonomous fast followup in optical/NIR, arcsec location and redshift measurement of detected GRB/transients



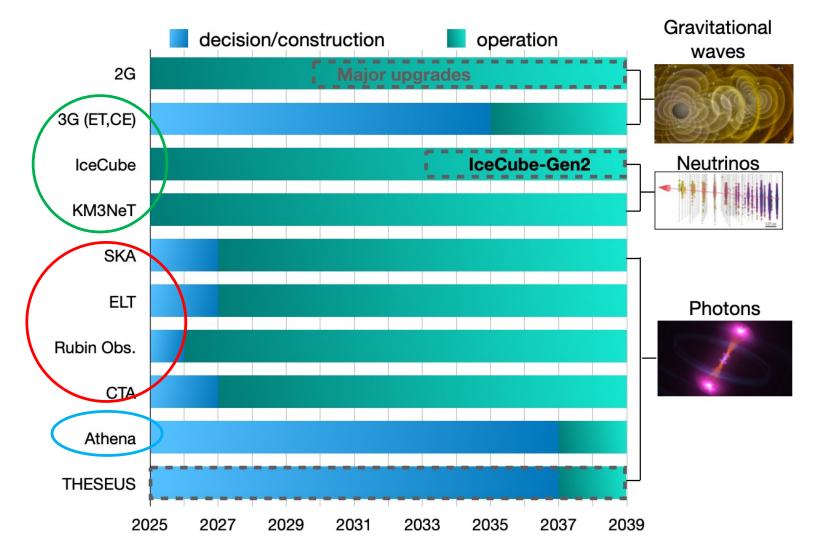
70 cm Korsch telescope


- Photometry:
 - FoV 15'x15'
 - 5 filters: I (20.9), Z (20.7), Y (20.4), J (20.7), H (20.8) for 150s and SNR=5
- Specroscopy:
 - FoV 2'x2'
 - R~400 resolution slit-less spectroscopy 0.8-1.6 micron

IRT will:

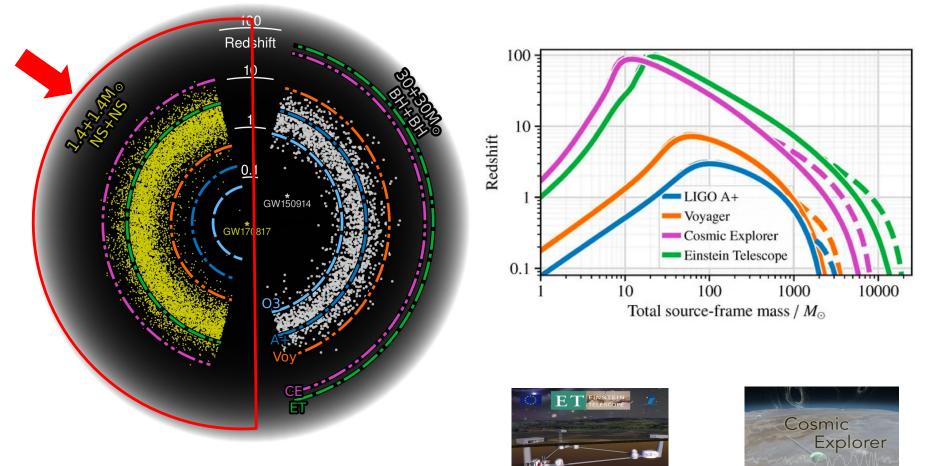
- autonomously identify the GRB afterglow
- Refine sky coordinates to < 5 arcsec real time (<1 arcsec post-processing)

Pointing strategy


- Survey Mode -> waiting for a GRB trigger, IRT, SXI and XGIS take data, with IRT pointed at a specific target (~1000/month) within a list of core and GO targets
- Burst Mode → GRB detection and first sky localization with XGIS and SXI (*) → Slew to put the source in the IRT FoV
- **3.** Follow-up Mode: within 10 min (3 min goal), 5 filter IRT imaging acquisition starts for 12.5 min
- 4. If an optical counterpart is detected, depending on its brightness:
 - -> Charactherization mode OR
 - -> Deep Imaging mode

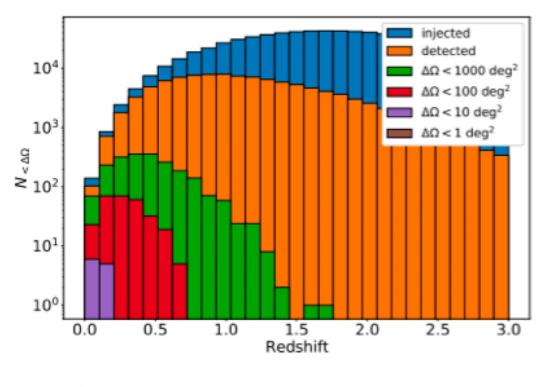
(*) THESEUS shall be able to distribute Burst/Transient alerts (sky coordinates, error box, trigger time) to ground observers (via the SDC)

- < 30 sec for 65%
- < 20 min for 95% burst


THESEUS ESA "Yellow Book" https://sci.esa.int/s/8Zb0RB8

THESEUS synergies

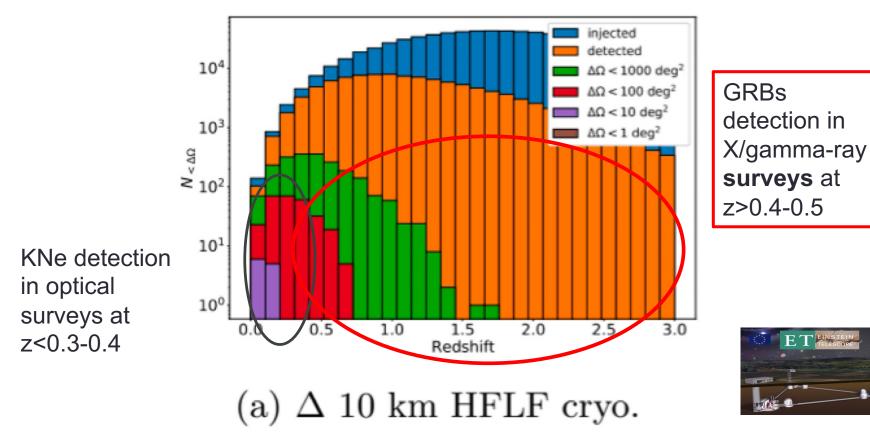
NS-NS merger with 3G GW detectors

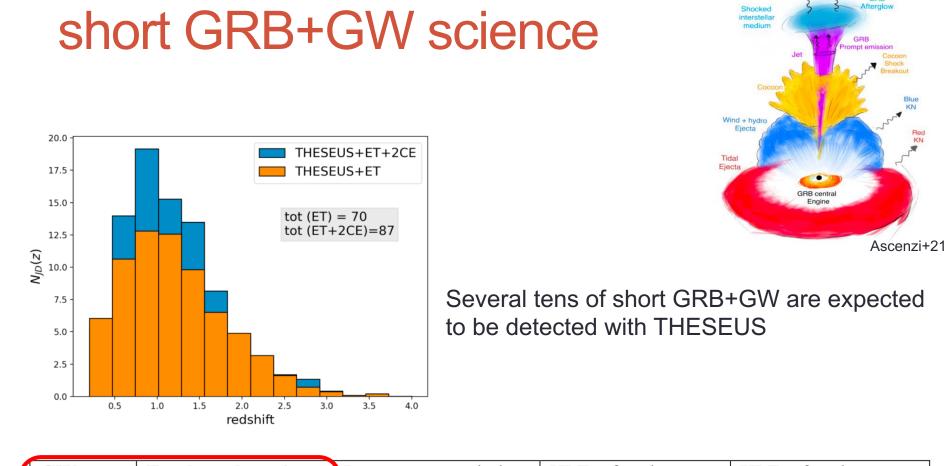

By >2035 ~10⁵/yr BNS will be detected up to z>1-2 with 3G GW detectors

E. D. Hall, 2022 Galaxies

EM counterparts of BNS

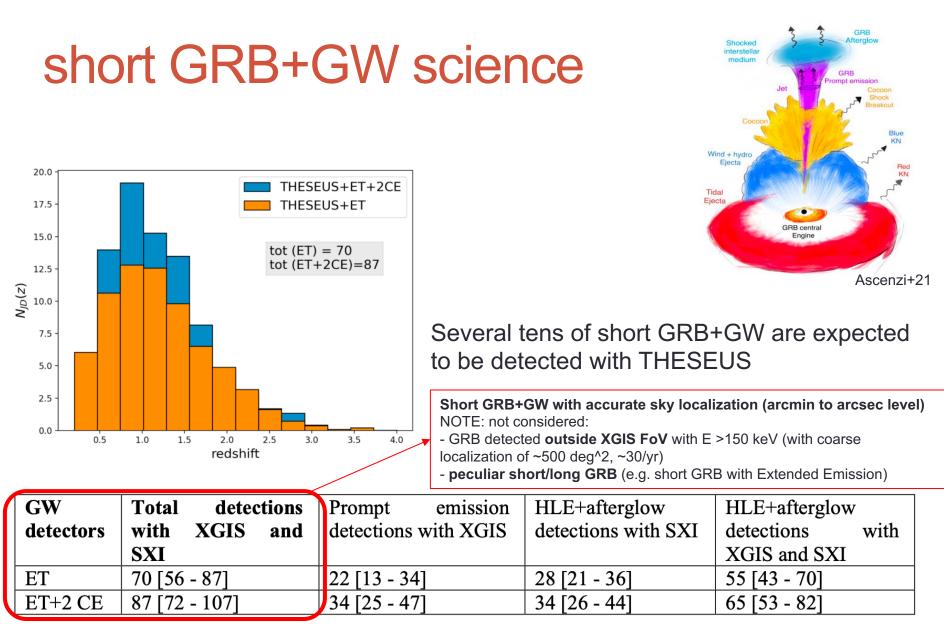
BNS / yr with ET – Branchesi+2023

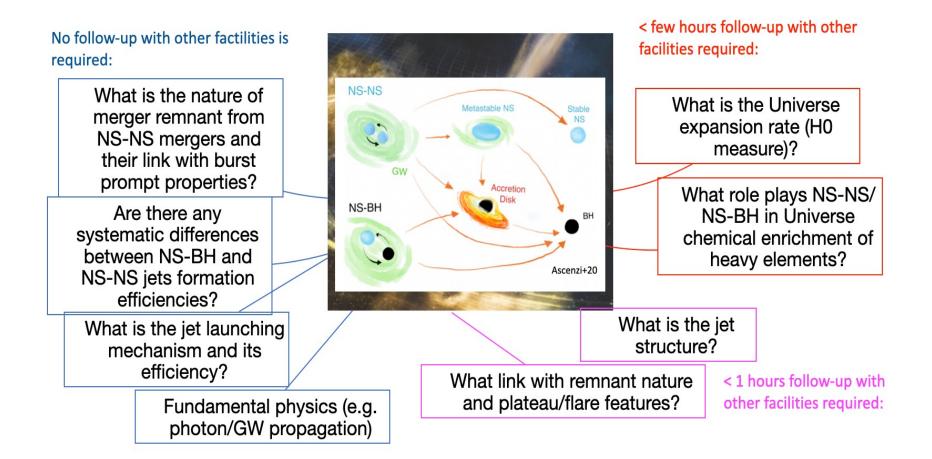


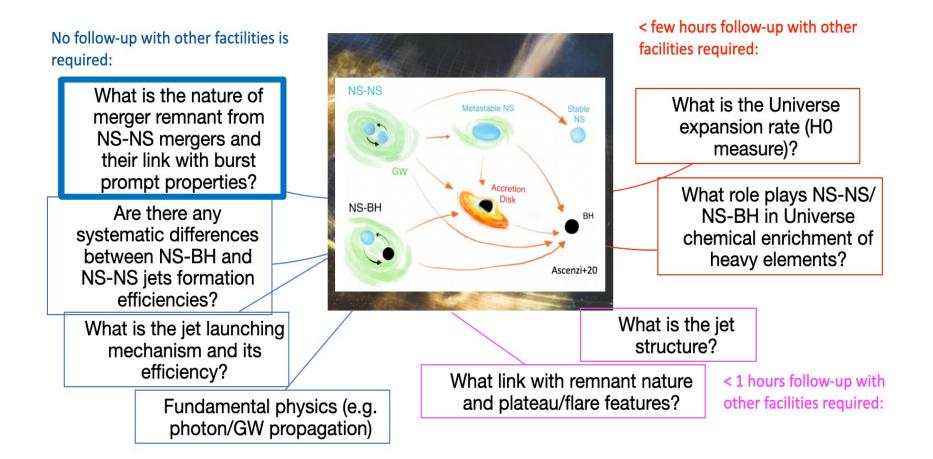

(a) Δ 10 km HFLF cryo.

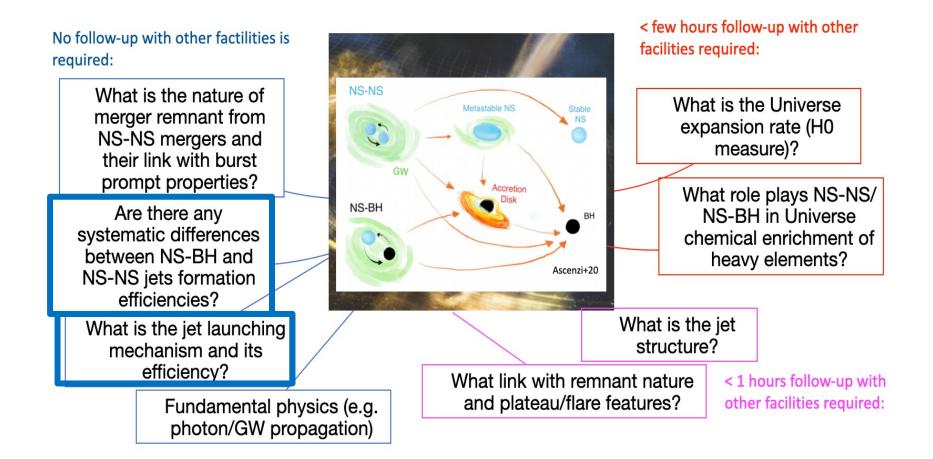
G. Stratta

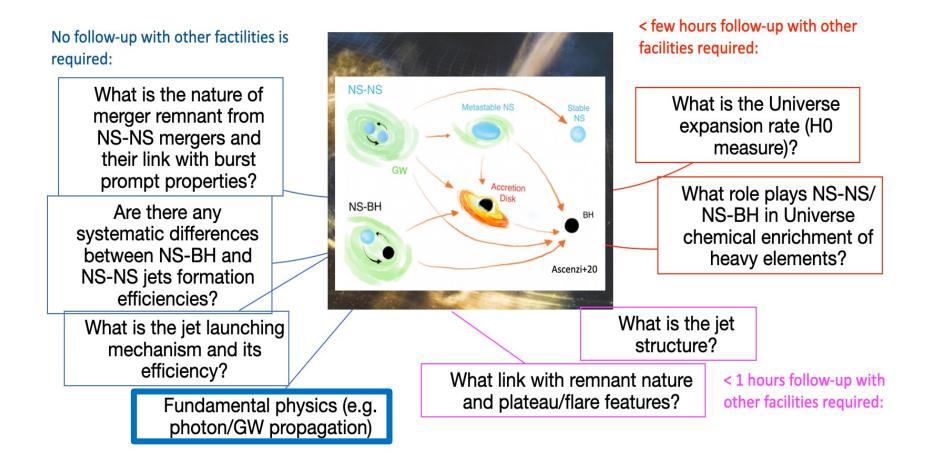
EM counterparts of BNS

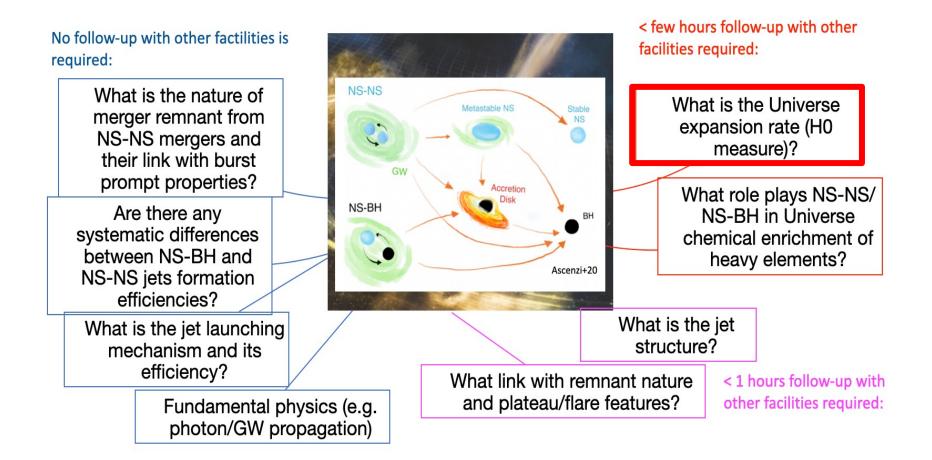

BNS / yr with ET – Branchesi+2023

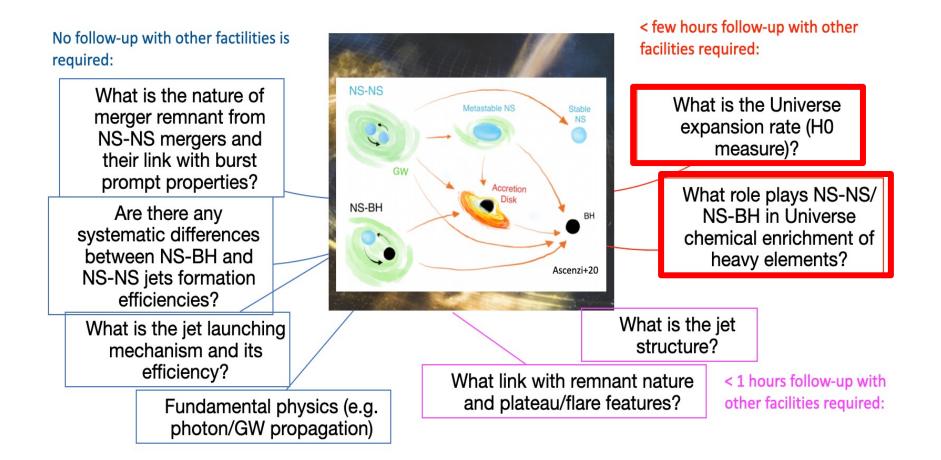


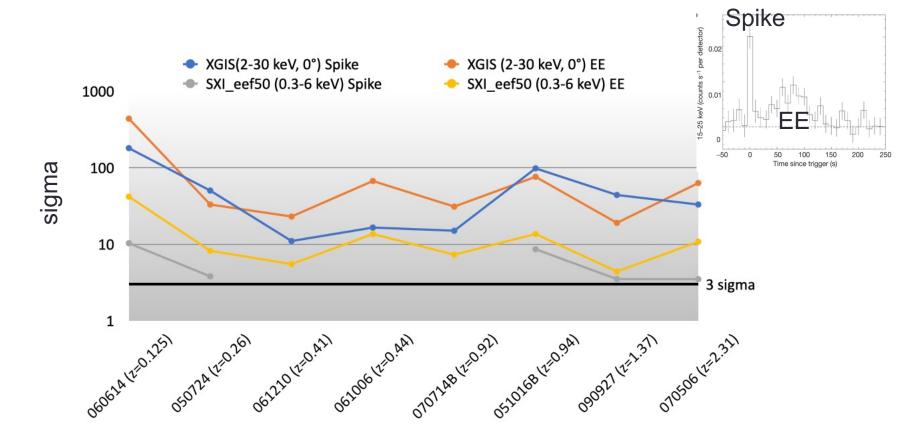

GW	Total detections	Prompt emission	HLE+afterglow	HLE+afterglow	
detectors	with XGIS and	detections with XGIS	detections with SXI	detections with	
	SXI			XGIS and SXI	
ET	70 [56 - 87]	22 [13 - 34]	28 [21 - 36]	55 [43 - 70]	
ET+2 CE	87 [72 - 107]	34 [25 - 47]	34 [26 - 44]	65 [53 - 82]	


From BNS pop. Synthesis + accurate structured jet model (see Ronchini+2022) + duty cycle (65% for XGIS and 75% for SXI)




From BNS pop. Synthesis + accurate structured jet model (see Ronchini+2022) + duty cycle (65% for XGIS and 75% for SXI)



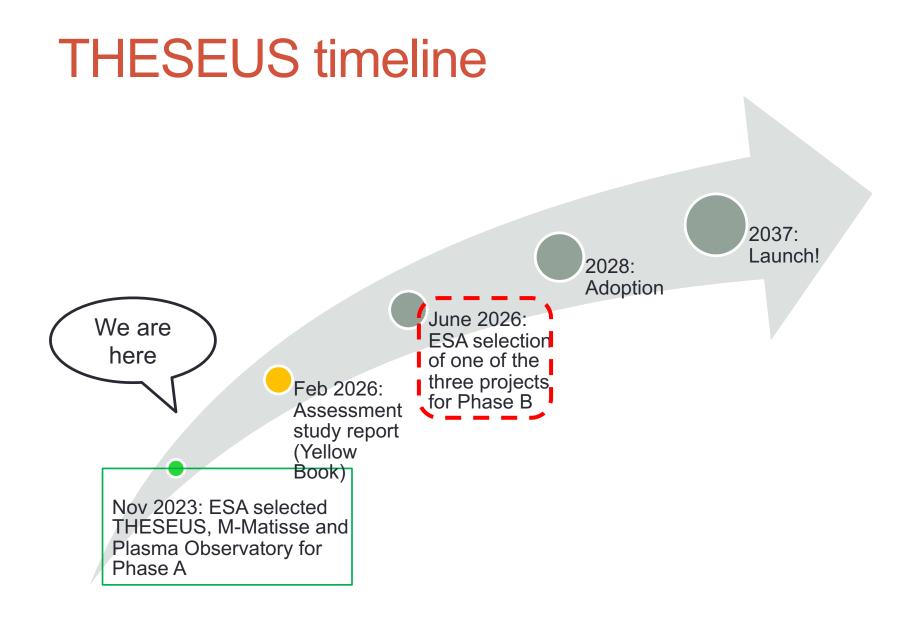

Unveiling the origin of SGRB+EE

THESEUS XGIS+SXI simulations of a sample of short GRB with Extended Emission with measured spectral parameters

GRB name	T_0 time	T_{90}^{a} (s)	T _{spike} (s)	T _{EE} (s)	B_{spike}^{b} (s)	$B_{\rm EE}^{b}$ (s)	Afterglow ^c	z
BAT								
050724^{d}	12:34:09	96	2.76	107	-0.02	3.04	XOR	0.258
051016B	18:28:09	4	4.03	33	0.07	4.23	XO	0.9364
060614^{d}	12:43:49	108.7	5.89	169	-1.55	7.24	xo	0.125
061006^{d}	16:45:51	129.9	2.05	113	-23.2	2	xo	0.4377
061210^{d}	12:20:39	85.3	0.13	77	0.21	1.04	X	0.4095
070506	5:35:58	4.3	5.25	15	3.75	38	XO	2.31
$070714B^d$	4:59:29	64	2.88	39	-0.8	32.29	XO	0.92
080503 ^d 090531B ^d	12:26:13	170	0.38	147 54	0.11	6	XO V2	-
090927	10:07:16	2.2	2.18	28	0.06	2.95	XO	1.37

Swift/BAT Short GRB+EE at known redshift from Kaneko+15

Unveiling the origin of SGRB+EE



THESEUS XGIS+SXI are ideal to identify and characterize SGRB+EE and their connection with CBC and their remnant properties \rightarrow only with 3G

THESEUS timeline

https://www.esa.int/Science_Exploration/Space_Science/Final_three_for_ESA_s_next_medium_science_mission

Everything you wanted to know about THESEUS...

Advances in Space Research, Vol, 62, 2018

Advances in Space Research Volume 62, Issue 1, 1 July 2018, Pages 191-244

The THESEUS space mission concept: science

L. Amati ^a & Ø, P. O'Brien ^b, D. Götz ^c, E. Bozzo ^d, C. Tenzer ^e, F. Frontera ^{f, g}, G.

Ghirlanda ^h, C, Labanti ^a, J.P. Osborne ^b, G, Stratta ⁱ, N, Tanvir ^j, R, Willingale ^b, P, Attina ^k

R. Campana¹, A.J. Castro-Tirado^m, C. Continiⁿ, F. Fuschino^a, A. Gomboc^o, ... J. Zicha^{fs}

case, design and expected performances

ELSEVIER

Advances in Space Research Volume 62, Issue 3, 1 August 2018, Pages 662-682

THESEUS: A key space mission concept for Multi-Messenger Astrophysics

G. Stratta ^{a, b, 1} A \otimes , R. Ciolfi ^{c, d}, L. Amati ^b, E. Bozzo ^c, G. Ghirlanda ^f, E. Maiorano ^b, L. Nicastro ^b, A. Rossi ^b, S. Vinciguerra ^g, F. Frontera ^{h, b}, D. Götz ¹, C. Guidorzi ^h, P. O'Brien ^J, J.P. Osborne ^J, N. Tanvir ^k, M. Branchesi ^{m, J}, E. Brocato ^x, M.G. Dainotti ^{n, b, av} ... M. Bernardini ^{av}

Experimental Astronomy issue 2021

Experimental Astronomy https://doi.org/10.1007/s10686-021-09795-9

Multi-messenger astrophysics with THESEUS in the 2030s

Riccardo Ciolfi^{1,2} · Giulia Stratta^{3,4} · Marica Branchesi^{5,6} · Bruce Gendre⁷ · Stefan Grimm^{5,6} · Jan Harms^{5,6} · Gavin Paul Lamb⁸ · Antonio Martin-Carrillo⁹ · Ayden McCann⁷ · Gor Oganesyan^{5,6} · Eliana Palazzi³ · Samuele Ronchini^{5,6} · Andrea Rossi³ · Om Sharan Salafia^{10,11} · Lana Salmon⁹ · Stefano Ascenzi^{12,13} · Antonio Capone^{14,15} · Silvia Celli^{14,15} · Simone Dall'Osso⁵ · Irene Di Palma^{14,15} · Michela Fasano^{14,15} · Paolo Fermani^{14,15} · Dafne Guetta¹⁶ · Lorraine Hanlon⁹ · Eric Howell⁷ · Stephane Paltani¹⁷ · Luciano Rezzolla^{18,19,20} · Serena Vinciguerra²¹ · Angela Zegarelli^{14,15} · Lorenzo Amati³ · Andrew Blain⁸ · Enrico Bozzo²² · Sylvain Chaty^{23,24} · Paolo D'Avanzo^{10,1} fnmMassimiliano De Pasquale²⁵ · Hüsne Dereli-Bégué^{26,27} Giancarlo Ghirlanda^{10,11} · Andreja Gomboc²⁸ · Diego Götz²⁹ · Istvan Horvath³⁰ · Rene Hudec^{31,32,33} · Luca Izzo³⁴ · Emeric Le Floch³⁵ · Liang Li³⁶ · Francesco Longo^{37,38,39} · S. Komossa⁴⁰ · Albert K. H. Kong⁴¹ · Sandro Mereghetti⁴² · Roberto Mignani^{42,43} · Antonios Nathanail⁴⁴ · Paul T. O'Brien⁸ · Julian P. Osborne⁸ · Asaf Pe'er²⁷ · Silvia Piranomonte⁴⁵ · Piero Rosati⁴⁶ · Sandra Savaglio⁴⁷ · Fabian Schüssler⁴⁸ · Olga Sergijenko^{49,50} · Lijing Shao^{51,52} · Nial Tanvir⁸ · Sara Turriziani⁵³ · Yuji Urata⁵⁴ · Maurice van Putten^{55,7} · Susanna Vergani⁵⁶ · Silvia Zane⁵⁷ · Bing Zhang⁵⁸

THESEUS conference 2021

THESEUS CONFERENCE 2021, VIRTUAL - 23-26 March 2021

Home Program Registration Participants Posters & Slides Contact

The Transient High-Energy Sky and Early Universe Surveyor (THESEUS) is a space mission concept currently under Phase A study by the European Space Agency (ESA) as candidate M5 mission, in view of a launch opportunity in 2032. The current assessment phase will be concluded in mid-2021. Proposed and developed by a large international collaboration, the THESEUS project aims at fully exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. Through an unprecedented combination of X-/gamma-rays monitors, an on-board NIR telescope and automated fast slewing capabilities. THESEUS will be

https://theseus.astro-ge.ch/

Galaxies 2022, 10, 60

galaxies

MDPI

Article

Breakthrough Multi-Messenger Astrophysics with the THESEUS Space Mission †

Giulia Stratta ^{12,4}0, Lorenzo Amati ²0, Marica Branchesi ³, Riccardo Ciolfi ⁴0, Nial Tanvir ⁵0, Enrico Bozzo ⁶, Diego Götz ⁷, Paul O'Brien ⁵ and Andrea Santangelo ⁸0

SPIE 2024, Vol 13093

THESEUS: Transient High Energy Sky and Early Universe Surveyor

Enrico Bozzo, Lorenzo Amati, Paul O'Brien, Diego Goetz, Andrea Santangelo

Author Affiliations +

2021 ESA Yellow Book

https://sci.esa.int/documents/ 34375/36249/Theseus_YB_fi nal.pdf

Cesa

ESA/SCI(2021)2 February 2021

THESEUS Transient High-Energy Sky and Early Universe Surveyor

- THESEUS is a mission concept developed by a large European collaboration and now selected for ESA M7 Phase A in competition with other two missions -> next selection mid-2026
- Only X/gamma-ray surveyors like THESEUS will catch the EM counterparts of poorly localized GW sources at z>0.4-0.5

• THESEUS will provide:

- \rightarrow Autonomous detection of the source
- \rightarrow Autonomous characterization of the source from MeV to NIR
- → Quick broadcast of sky localization down to arcmin/arcsec levels -> Activation of MW observational campaigns
- THESEUS will enhance the scientific return of next generation multi messenger (ET, Cosmic Explorer, LISA and Km3NET, IceCube-Gen2;) and e.m. facilities (e.g., ELT, SKA, CTA, newATHENA)
- THESEUS is in competition with other two projects -> a strong sustain from the community is needed!

Keep calm and Support THESEUS!

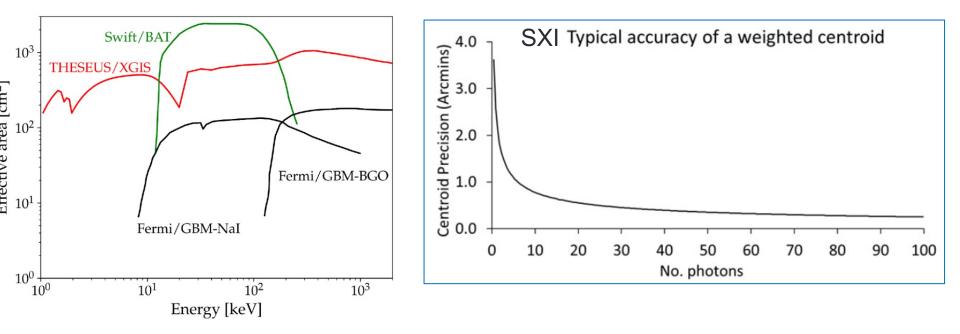
Extra slides

Mission	Autonomous rapid repointing	Arcsec localisation	Optical imaging	Near-IR imaging	Near-IR spectroscopy	On-board redshift broadcasting	<10 keV X-ray coverage	>10 keV X-ray coverage	MeV -ray coverage
Swift	√	1	1	×	×	×	1	1	×
Fermi/GRB	×	×	×	×	×	×	×	1	1
Integral	×	×	1	×	×	×	×	1	1
SVOM	1	1	1	×	×	×	1	1	1
Einstein Probe	√	×	×	×	×	×	1	×	×
eXTP	√	1	×	×	×	×	1	×	×
THESEUS				1			1		√

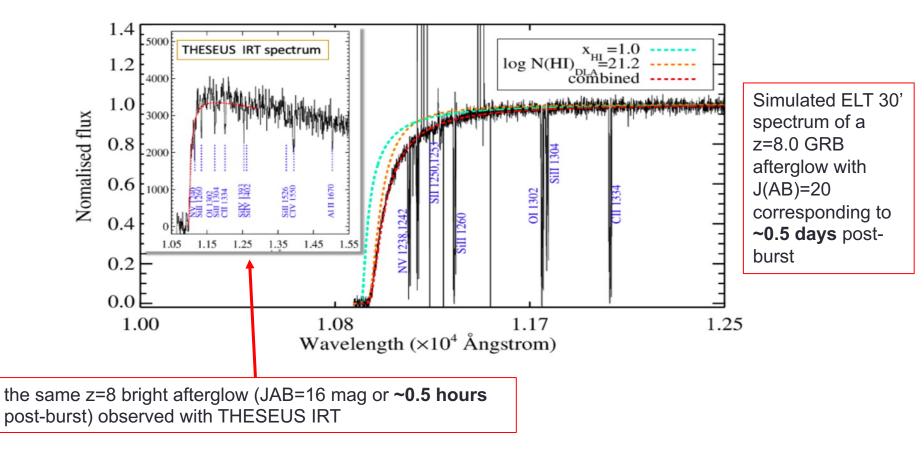
Detection performance of THESEUS compared with current and upcoming highenergy space missions. **Table 1.** Key science performance requirements of THESEUS¹. The sensitivity requirements assume a power-law spectrum with a photon index of 1.8 and an absorbing column density of 5×10^{20} cm⁻².

SXI sensitivity (3 σ)	$\frac{1.8\times10^{-11}~{\rm erg~cm^{-2}~s^{-1}}~(0.35~{\rm keV}\text{, }1500~{\rm s})}{10^{-10}~{\rm erg~cm^{-2}~s^{-1}}~(0.35~{\rm keV}\text{, }100~{\rm s})}$				
XGIS sensitivity (1 s, 3σ)	$\begin{array}{l} 10^{-8}\mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}(230\mathrm{keV})\\ 3\times10^{-8}\mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}(30150\mathrm{keV})\\ 2.7\times10^{-7}\mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}(150\mathrm{keV}1\mathrm{MeV}) \end{array}$				
IRT sensitivity (imaging, SNR = 5, 150 s)	20.9 (I), 20.7 (Z), 20.4 (Y), 20.7 (J), 20.8 (H)				
SXI FoV	$0.5 \text{ sr} - 31 \times 61 \text{ deg}^2$				
XGIS FoV (\geq 20% efficiency)	2 sr (2–150 keV) – 117 × 77 deg ² 4 sr (≥150 keV)				
IRT FoV	$15' \times 15'$				
Redshift accuracy ($6 \le z \le 10$)	$\leq 10\%$				
IRT resolving power	≥400				
XGIS background stability	≤10% over 10 min				
Field-of-Regard	\geq 50% of the sky				
Trigger broadcasting delay to ground-based networks	\leq 30 s (65% of the alerts) \leq 20 min (65% of the alerts)				
External alert (e.g., GW or ν events) reaction time	>4–12 h				
SXI positional accuracy (0.3–5 keV, 99% c.l.)	≤2 arcmin				
XGIS positional accuracy (2–150 keV, 90% c.l.)	\leq 7 arcmin (50% of triggered short GRBs) \leq 15 arcmin (90% of triggered short GRBs)				
IRT positional accuracy (5 σ detections) real time post-processing	\leq 5 arcsec \leq 1 arcsec				

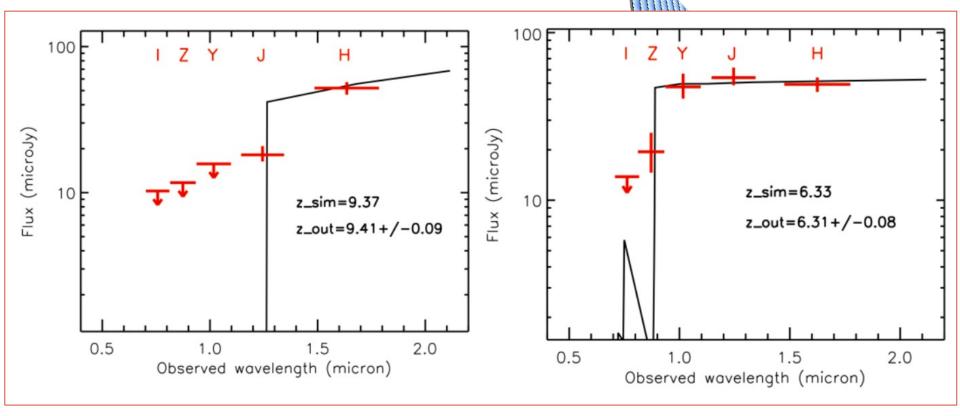
Advances in Space Research Volume 62, Issue 1, 1 July 2018, Pages 191-244

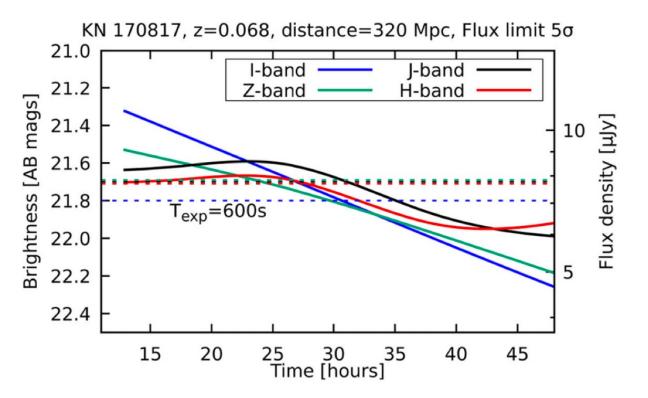

The THESEUS space mission concept: science case, design and expected performances

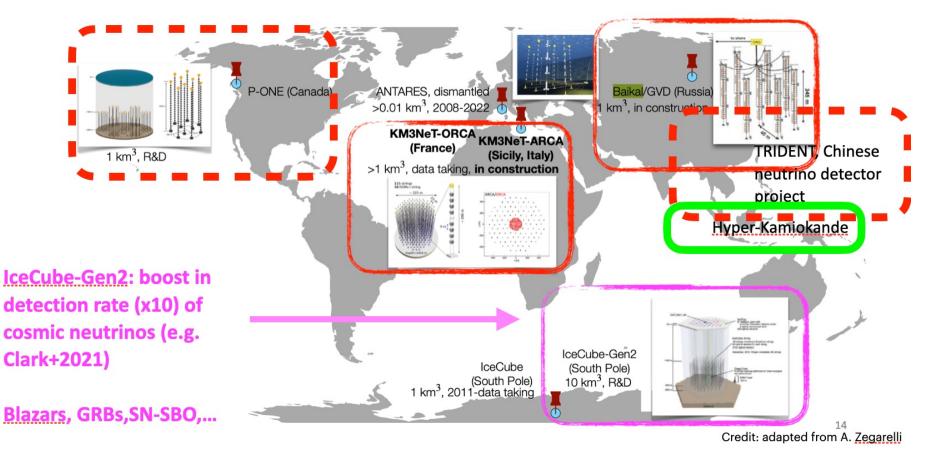
L. Amati ^a Ջ , P. O'Brien ^b, D. Götz ^c, E. Bozzo ^d, C. Tenzer ^e, F. Frontera ^{f, g}, G. Ghirlanda ^h, C. Labanti ^a, J.P. Osborne ^b, G. Stratta ⁱ, N. Tanvir ^j, R. Willingale ^b, P. Attina ^k, R. Campana ¹, A.J. Castro-Tirado ^m, C. Contini ⁿ, F. Fuschino ^a, A. Gomboc ^o ... J. Zicha ^{fs}

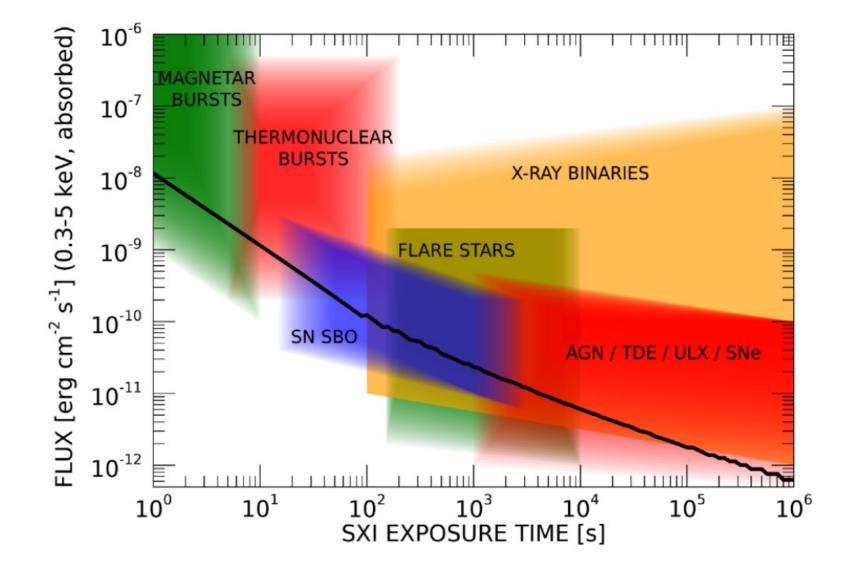

~2000 deg² 0.3-5 keV >10000 deg² 2 keV -1 MeV

Stratta+2022



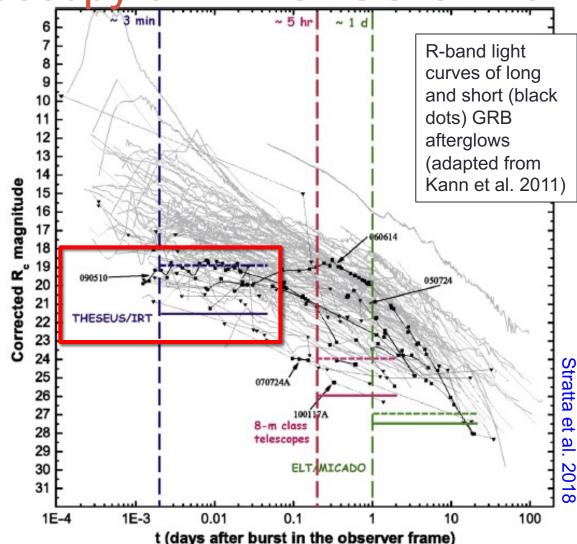



Two examples of simulated IRT photometric data and model fitting



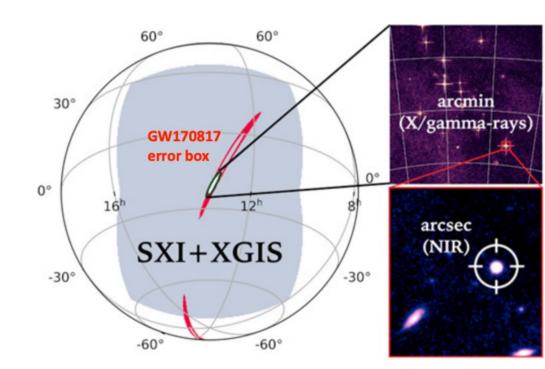
THESEUS can detect a kilonova like AT2017gfo with 5 sigma up to ~300 Mpc in all bands with 600s of exposure, within 1-2 days from the merger epoch

The growing neutrino detector network


Afterglow spectroscopy of THESEUS GRBs

IR Telescope will provide:

- arcsec localizations
- Redshift measures
- Luminosity estimates


These information will be used to optimise follow-up strategies (i.e. most appropriate facility, select highest priority target) for:

- Deep host search
- High S/N afterglow spectroscopy

The role of THESEUS in MMA

- Independent detection of the EM counterpart of GW detected sources -> increase statistical confidence on astrophysical nature of subthreshold events
- Autonomous source characterization thanks to the large spectral coverage on onboard instruments
- Accurate sky coordinate dissemination -> allowing for follow-up campaigns with large telescopes as ELT, SKA, CTA, newAthena, etc.

