

Development of sapphire mirrors @ Lyon J. Degallaix for LMA – IP2I and iLM

ET-0XXXA-24

ET annual meeting - 11/2024

Introduction

- sapphire presentation

The cryogenic mirrors

- fused silica is no longer compatible
- substrate candidates
 - silicon (baseline for ET)
 - sapphire (KAGRA)
- must be available in Ø 450 mm, 200 kg
 - and with outstanding optical properties
 - with the matching low noise coating

Today, no solution for such substrates !

Advantages of sapphire

Transmission of a window : (without AR coating)

Sapphire transparent @ 532 nm et 1064 nm

Can use the same ecosystem as current generation of instruments

Advantages of sapphire

		Sapp	ohire	Silicon	
	Parameter	10K	20K	10K	20k
	Thermal Conductivity κ [W/(m.K)]	2900 (<i>c</i> -plane) [81]	4300 (<i>c</i> -plane) [82]	1000 (111) [83]	3000 (111) [83]
	Thermal Expansion <i>a</i> [K ⁻¹]	$5.3 imes 10^{-10}$ [84]	$4.6 imes 10^{-10}$ [84]	$4.8 imes 10^{-10}$ [85]	-2.9×10^{-9} [85]
	Specific Heat C [J/(kg.K)]	0.085 [86]	0.72 [86]	0.276 [87]	3.41 [87]
	Density ρ [kg/m ³]	3997		2331	
	Young's modulus Y [GPa]	464		169 (110) [88]	
	Poisson ratio σ	0.27 - 0.30		0.	22

Better thermal conduction \rightarrow lower thermal gradient, better heat conduction through the suspension

Les avantages du saphir

	Sapphire		Silicon	
Parameter	10K	20K	10K	20k
Thermal Conductivity κ [W/(m.K)]	2900 (c-plane) [81]	4300 (<i>c</i> -plane) [82]	1000 (111) [83]	3000 (111) [83]
Thermal Expansion <i>a</i> [K ⁻¹]	$5.3 imes 10^{-10}$ [84]	$4.6 imes 10^{-10}$ [84]	$4.8 imes 10^{-10}$ [85]	-2.9×10^{-9} [85]
Specific Heat C []/(kg.K)]	0.085 [86]	0.72 [86]	0.276 [87]	3.41 [87]
Density ρ [kg/m ³]	3997		2331	
Y oung's modulus Y [GPa]	464		169 (110) [88]	
Poisson ratio σ	- 0.30	0.22		

Higher density, mirror ×1.7 thinner (lower impact of the absorption / birefringence, better aspect ratio)

Issues highlighted by KAGRA

(relative) high optical absorption - not uniform

Presence of birefringence in transmission

Figure 4. Mean distribution of both birefringence Δn and θ -angle, calculated from the six input-polarization combinations which led to no miscalculations.

FIG. 7 (color). Absorption of 100 mm sapphire substrate in ppm/cm. The aperture size is 50 mm and the interaction point is 2 mm from the surface. There is a line where absorption is higher than the other regions.

doi 7

II Strong support in Lyon for sapphire

Local and regional situation

- on the campus of Lyon I
 - specialist of sapphire at iLM
 - expert in growth
 - LMA characterization benches

Monocrystalline fibers and ribbons

- a regional eco-system
 - ► RSA le rubis
 - plateform Crystal Innov
 - and equipment manufacturers
- (~ Grenoble)
- (~ Chambéry)

Several fundings obtained

Projet	Date	Financeur	Porteur Partenaires	Objectifs
OSAG	SAG 2019 - 2022 Idex ILM (G. Cagno LMA		iLM (G. Cagnoli) <i>LMA</i>	Achat four de croissance et banc de caractérisation optique au LMA
UIA	2019 - 2022	Région	Polygon Physics <i>LMA</i>	Démonstration de polissage ionique sur saphir
DOSFaP	2020 - 2025	Région	LMA (J. Degallaix) <i>iLM</i>	Thèse iLM-LMA pour la réduction des pertes optiques dans le saphir
Veloce	2022	CPER	IP2I - LMA	Achat d'une machine de polissage compatible saphir
SEPO 450	2024 - 2027	Région	ECM Greentech <i>iLM, LMA</i>	Création de nouvelles offres (four, rodage, mesure de surface) par les équipementiers pour la production d'optiques en saphir

Results – a custom growth furnace

Scaled to grow sapphire of Ø 450 mm

- sapphire of Ø >300 mm already produced
- no obvious defect
- optical characterization once we managed to cut the boule

Inside and outside of the oven

Results – a custom growth furnace

Scaled to grow sapphire of Ø 450 mm

Inside and outside of the oven

Ø 230 mm, 40 kg

Also Ti-doped sapphire 12

Results – optical loss

Demonstration of very low (optical loss) sapphire mirrors in a cavity (F ~ 250 000)

Optical loss inside the cavity while the position of the end mirror is scanned

Results – ion beam figuring

Refurbished an old vacuum tank

 demonstration done (nothing new)

asking for funding for a commercial machine

Results – optical absorption

Growth of around ~ 20 sapphire samples of Ø 30 mm with different growth parameters

- absorption under control (< 15 ppm/ cm)
- validate the raw materials
- birefringence too high but not the focus of this work (under study how to reduce it)

Absorption mapping

Results – optical absorption

III The short term

What we already know to do....

Crystal growth

Coating

The logical follow up to build a mirror

Mirror =

Crystal growth

Polishing

Coating

Require one new equipment

Raw glass

Chamfering edges

Grin

Cleaning

Inspection

More difficult than expected to outsource

mechanical polishing

ion beam figuring (need to acquire a new large machine)

(just delivered)

The new polishing machine

- for substrates up to Ø 400 mm, 50 kg
- process developed for sapphire (machine compatible other materials)

(in a temporary space in the lab in Lyon)

Ambition for the next 2-3 years

- find a way to do the cutting / polishing (develop internally or create collaboration)
- do a complete mirror in sapphire (Ø 300mm)
- if performance ok, propose it to KAGRA for an upgrade post 05

Conclusion

- New activities regarding the substrate development in Lyon, complementary to the coating work in LMA and iLM
- No competition at the global level to product large and very low optical loss sapphire
- First optical characterisation on large samples next year