

Magnetron Sputtered Hydrogenated Amorphous Silicon Coatings for Einstein Telescope Mirrors

Diksha^{1,2}, Alex Amato^{1,2}, Jessica Steinlechner^{1,2} Gianluigi Maggioni^{3,4}, Hanna Skliarova³, Marco Bazzan³

Speaker : Diksha

- 1. Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- 2. Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands
- 3. Padova University, Via 8 Febbraio, 2 35122 Padova, Italy
- 4. INFN-LNL , Viale dell'Università, 2 35020- Legnaro (PD) , Italy

Introduction

Amorphous silicon

Padova University

- Hydrogenation during deposition by radio frequency magnetron sputtering
- Compositional Analysis with annealing temperature
 Maastricht University
- Refractive index vs annealing temperature
- Optical absorption vs annealing temperature

Limitations of Amorphous Silicon

High optical absorption

- Exceeds acceptable levels for gravitational-wave detectors
- Studies related the absorption in the NIR region of aSi to the dangling bonds (unpaired electron-spin density) [1]
- Hydrogenation can help reducing dangling bond and hence absorption [2]
- H terminates dangling bonds; rearrangement of hydrogen sub lattice can affect concentration and distribution in defects thus facilitates a-Si structural rearrangement

[1] Phys. Rev. Lett. 131, 256902 [2] Phys. Rev. Lett. 121, 191101

Amorphous silicon coatings

Deposition setup @LNL-INFN

Target Si 99.999% Radio Frequency Magnetron Sputtering

Deposition	aSi	aSi:H
Sputtering gas	Ar	Ar+5%H2
Substrates	2 SiO2 disks (C7979), 2 Si wafer one side polished	2 SiO² disks (C7979), 2 Si wafer one side polished

Optical Characterization

Maastricht University

Transmission Spectra for as deposited coatings

6

Transmission spectra

Refractive Index and thickness vs heat treatment

Energy gap vs heat treatment

Diksha (d.diksha@maastrichtuniversity.nl)

Extinction Coefficient @ 1550 nm

Results obtained in our study

- 1. Absorption measurements done with PCI (photo thermal common path interferometer) technique.
- 2. Absorption values were used to extract extinction coefficient values with the help of Tfcalc software.

Results from other studies conducted before in LVK

https://dcc.ligo.org/LIGO-G2400542 (LVK March 2024) Phys. Rev. Lett. 131, 256902

RBS - Rutherford backscattering spectrometry ERDA - Elastic recoil detection analysis

RBS measurements

aSi

aSi:H

ERDA Measurements

Film Atomic Combination			
Sample	H/Si	Ar/Si	
aSi	0.07	0.004	
aSi:H	0.21	0.006	

RBS+ERDA after annealing

H/Si atomic ratio obtained by ERDA+RBS has similar **trend** in respect to Si-H bonds concentration obtained by FTIR

There is **significant decrease** of H/Si atomic ratio in aSi 937 sample **sputtered in 5%H**₂+Ar **after 300°C**

FT/IR analysis

@LNL-INFN

modes •Si-Hx wagging mode •Si-O-Si single or multiple band Proportional to "concentration"

of the bond in the film

FTIR: peak area evolution (trend) on annealing

FTIR: peak area evolution (trend) on annealing

It is evident the change of the trend of hydrogen release (decomposition of Si-H bonds) in aSi 937 sample sputtered in $5\%H_2+Ar$

In aSi 936 sample **sputtered in pure Ar** the release of hydrogen on increasing annealing temperature seems to have a softer trend After annealing at 450°C all samples show blistering. Ar deposited samples have more bubbles

SEM_EDS measurement of bubbles

Hypothesis: bubble is full of Ar

aSi_ 300°C, 400°C, 450°C, 500°C

aSi:H_ 300°C, 400°C, 450°C, 500°C

No Ar variation through line scan was observed

30kV e-beam

Summary

The lowest extinction coefficient was observed for magnetron sputtered aSi:H (5% H2) at 300 °C was 4.6E-05

It is almost a factor of 12 times with the non hydrogenated sample at the same temperature and 8 times to the lowest at 400 °C

The hydrogen content rapidly falls after 300 °C observed from the ERDA measurments . It is also observed that the Si-H bond "concentration" from area under the peaks in FT/IR analysis also seems to decrease.

Lower refractive indices observed for hydrogenated samples (3.01 (aSi:H) and 3.42 (aSi) at 300 °C) (12% less than aSi at 300 °C)

Further steps for amorphous silicon

Measure 500 nm thick single layers for characterization

Development of multiple layer stack of amorphous silicon and silicon nitride and it's study

Thank you for your attention!