

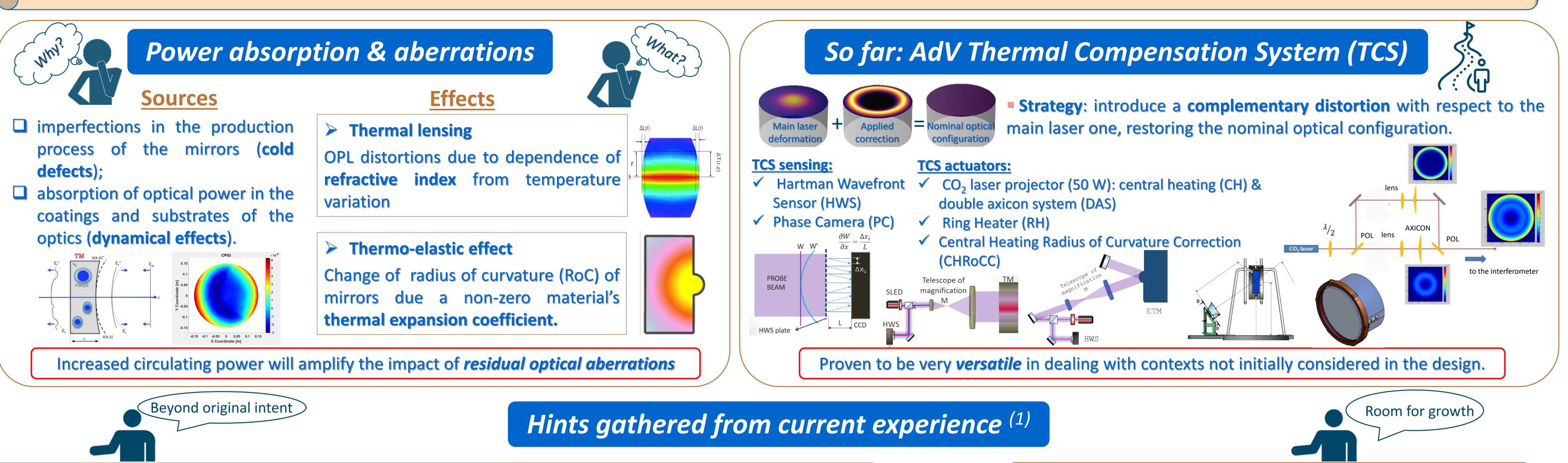
Finanziato dall'Unione europea **NextGenerationEU**

Preparing for thermal aberrations mitigation in ET: Wavefront Sensing and Control developments at AiLoV-ET

D. Lumaca^{1*}, L. Aiello^{1,2}, A. Biot², E. Cesarini¹, M. Cifaldi¹, L. A. Corubolo², V. Fafone^{1,2}, M. Lorenzini^{1,2}, Y. Minenkov¹, I. Nardecchia¹, P. P. Palma², A. Rocchi¹, V. Scacco^{1,2}, C. Taranto^{1,2}

¹ INFN, Section of Rome Tor Vergata, Rome, Italy

² University of Rome Tor Vergata, Department of Physics, Rome, Italy


*diana.lumaca@roma2.infn.it

Future high-power operation of Einstein Telescope (ET) in its high-frequency dedicated configuration (ET-HF), is expected to amplify the impact of thermally-induced optical aberrations, posing new challenges for beam quality and interferometric stability. Building on the legacy of thermal compensation systems developed for Advanced Virgo, we are currently investigating *advanced wavefront sensing and control (WSC) concepts* aimed at addressing the needs of next-generation detectors within the AiLoV-ET (Advanced) Optics Lab @ Tor Vergata for ET) infrastructure.

A dedicated testbench is being developed to serve as a central platform for *investigating thermal aberrations* and validating wavefront control strategies under realistic

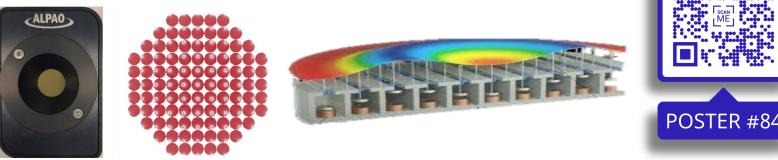
interferometric conditions. Around this core setup, several R&D activities are underway — including improved laser beam shaping, adaptive thermal actuation, and enhanced wavefront sensing — to support both the investigation of fundamental limitations and the development of novel compensation strategies.

This contribution will provide an overview of the WSC activities currently underway within AiLoV-ET, highlighting the experimental platforms and technologies under development to support the ambitious goals of ET-HF.

Form experience gained with AdV

Independency/redundancy of actuators and sensors complementary to versatility:

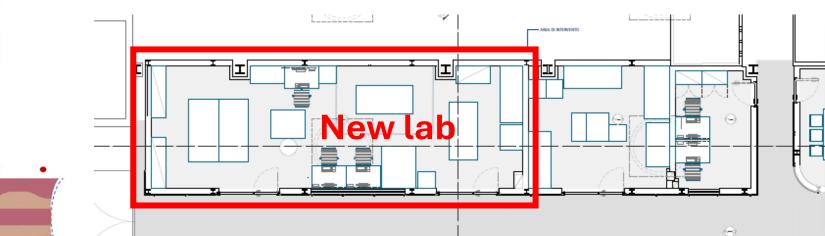
- TCS used to face commissioning needs:
 - \checkmark CH for correction of cold transmission maps, improvement of contrast defect
 - ✓ Thermal lens due to RH serve as reference for the centre of mirrors in HWS maps
 - ✓ HWS SLED beam used as reference for detection parabolic mirror replacement...
- TCS actuators can be useful in tackling foreseen issues
 - RH on end mirrors could be employed to reduce the impact of parametric instabilities
 - TCS methods can help in approaching other problems
 - Adaptive mode matching for injection of squeezed beam
 - Reduction of round-trip losses in filter cavities

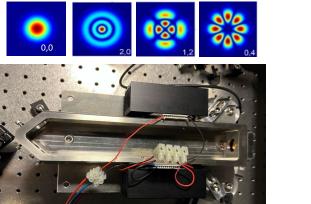

- Sensors should disentangle accessible observations as far as possible by design;
- Actuators should be able to **control separately the** relevant DOFs within actuation dynamics.
- \Box Redundancy of control can free actuation resources \rightarrow boosted versatility

Key concepts to tackle optical aberrations in future GW detectors: *flexibility, independency and redundancy*

Advanced Wavefront Sensing and Control (WS&C) developments at AiLoV-ET

- Adaptive Optics: Deformable Mirror (DM) ⁽⁴⁾
- Imprint a phase on CO₂ beam to obtain the **desired** intensity heating pattern;
- Correction of non axi-symmetric residual OPL.


Coupled RH (11)

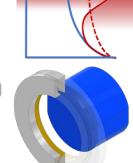

✓ ...

- RH introduces a thermal lens (C_{TL}) inside the substrate
- The C_{TL} could be compensated, placing a second RH

CO, Mode Cleaner (MC) ^(5,6)

- Efficiency of DAS correction strictly related to the laser beam quality;
- TEM₀₀ Gaussian VS High Order Modes (HOMs);
- Mode cleaner cavity for high power CO₂ laser has never been realized before.

SCAN

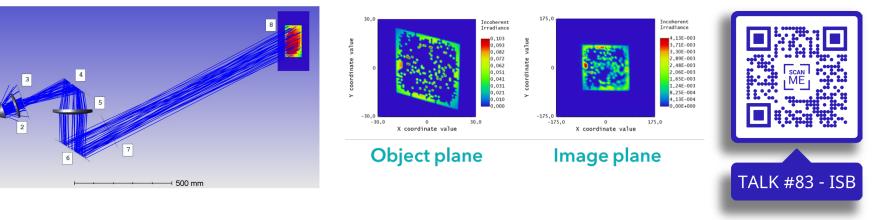

'irtual Tour

FROSTI⁽⁷⁾-like actuator

Mode matching lens

-0----

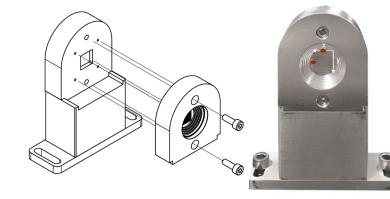
- The (spherical) curvature of the TM HR surfaces is altered by the power absorption and is compensated with the use of the RHs;
- Compensation produces a non-spherical residual deformation;
- The effect can be corrected by heating the HR surface with an optimal thermal radiation profile (new type of actuator).

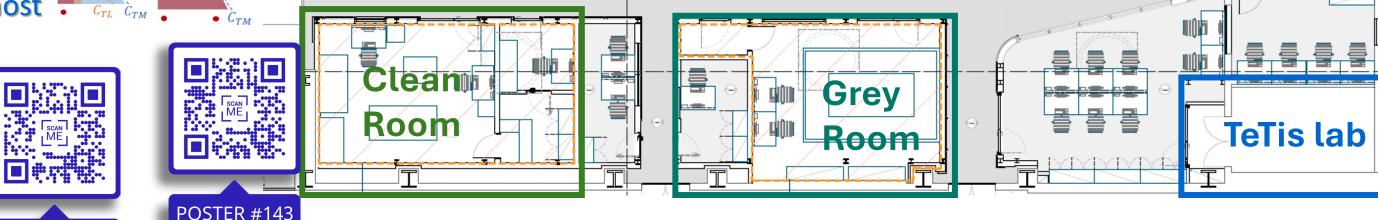


Point Absorbers (PA) mitigation (10)

Offset phase locking l

Concave ----


- Highly absorbing areas on the coatings of the core optics
- The corrective heating pattern is reproduced by a binary mask illuminated by a thermal source, with each hole acting as an actuator.



near the HR surface, such that the OPL is almost - CTL CTM - CTL constant along the thickness.

New HWS ⁽⁸⁾

- New sensor⁽⁹⁾ based on CMOS technology (Ximea):
- New custom thermal housing in aluminium
- The new HWS have been thoroughly characterized POSTER

Remote control and interventions, not to alter thermal status of the source * Monitoring the of correction patterns

EINSTEIN TELESCOPE

• A new facility with a marginally-stable cavity (MSC) will be hosted in the AiLoV-ET laboratory ⁽²⁾.

- This kind of cavity is very sensitive to optical aberrations: any small departure from the design parameters leads to a change in the cavity resonance conditions and in the degeneracy of its eigenmodes.
- As such, a MSC can be seen as an "amplifier" of wavefront distortions: new sensors and actuators will be integrated in the MSC facility.

actuators will be integrated	in the MSC facility.	Schematic of a near-unstable cavity setup (MSC) ⁽³⁾
	<u>References</u>	
(1) M. Lorenzini, High Power is Nothing Without Control: Tackling Thermal Aberrations in Future GW Detectors,	and mitigation of non-axi-symmetric optical defects, PhD Thesis, 2023	(8) A. Biot, A new Hartmann Wavefront Sensor for the aberration control in Advanced Virgo Plus Phase II, Master
presentation at GRASS 2024, <u>VIR-0754A-24</u>	(5) L. Aiello, Development of new approaches for optical aberration control in gravitational wave interferometers, PhD	Thesis, 2023
(2) L. Aiello et al., The AiLoV-ET project: advanced optics and materials for tackling optical aberrations and thermal	Thesis, 2019	(9) Developed in collaboration with Adealide University
noise in Einstein Telescope, presentation at 3 rd ET Annual Meeting, 2024, <u>#28</u>	(6) P. Giri, Optimization of CO ₂ laser-baser aberration control in Advanced Virgo +,PhD Thesis, 2023	(10) M. Cifaldi, Mitigation of anomalous absorption in the Virgo core optics, PhD Thesis, 2022
(3) H. Wang et al., Phys. Rev. D 97, 022001 (2018)	(7) Xuejun Fu et al, Improving the Robustness of Next-Generation Wavefront Control: Characterization and Analysis of	(11) E. Porcelli, Study of 2 Ring Heaters thermal lensing compensation strategy for Virgo O5, Technical Report, 2021
(4) C. Taranto, Upgraded optical aberration correction techniques for advanced Virgo plus: commissioning toward O4	FROSTI Heating Profiles, LIGO - T2400197, 2024	

XV Einstein Telescope Symposium, Bologna, 26th – 30th May 2025, CNR - Bologna Research Area, Bologna (Italy)