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1. Parameter estimation is expensive! 2. What can machine learning do for you? 4. Ok but is it good?
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3. The Neural Likelihood Estimator. 5. Conclusions
How does the Fast Likelihoods for Evidence approXimation (FLEX) NLE gets trained? There are 4 phases: Neural likelihood estimators are a viable option for

speeding up gravitational wave parameter estimation. PP

Phase 1: Generate training data
5 plots and comparisons with standard PE methods show
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