

Gravitational Wave Data Analysis on the ESCAPE Virtual Research Environment

A. less, CNRS LAPP

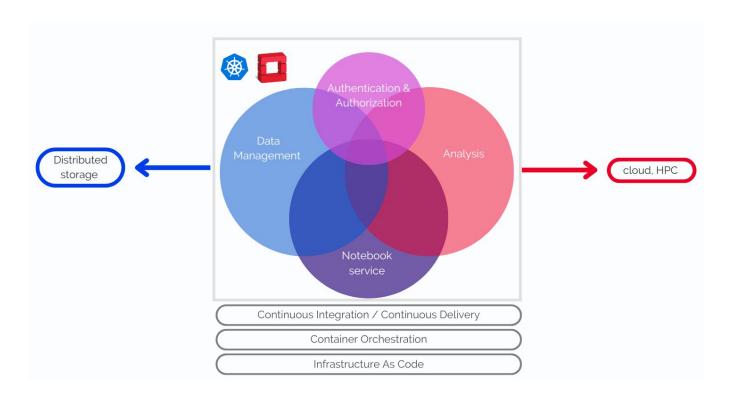
XV ET Symposium, Bologna

The ESCAPE Open Collaboration

The ESCAPE Virtual Research Environment (VRE)

The Virtual Research Environment was developed by the VRE Team at CERN as part of the ESCAPE Project, under EU Horizon 2020 Grant Agreement no. 824064.

References


- CHEP2024 proceedings: E. Garcia-Garcia, G. Guerrieri, et al. https://arxiv.org/pdf/2503.02483.
- CHEP2024 contribution: https://indico.cern.ch/event/1338689/contributions/6010696/
- VRE Documentation: https://vre-hub.github.io
- Github Profile: https://github.com/vre-hub

CERN VRE Hub: https://jhub-vre.cern.ch

Mattermost Channel: https://mattermost.web.cern.ch/escape/channels/vre-support

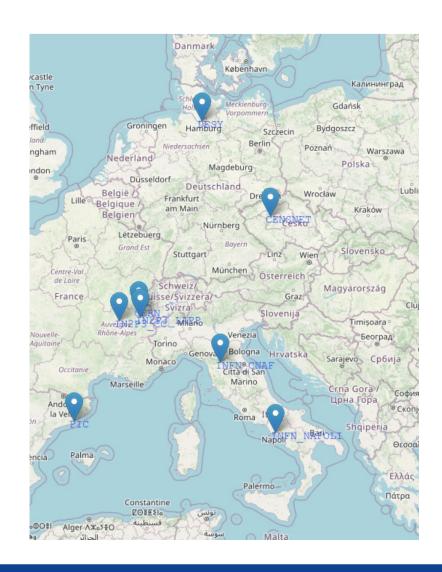
- Federated AAI
- ESCAPE Datalake for federated distributed storage .
- Computing cluster supplying the processing power to run full analyses.
- JupyterHub Interface with containerised environments.

ESCAPE AAI

- ESCAPE AAI is based on INDIGO Identity and Access Management (IAM).
- Request an account and wait for approval.
- Add escape group.
- Support Usr+pwd, JSON Web Token OIDC, x.509 certificates.

All ESCAPE Virtual Research Environment (VRE) services and resources are federated through the ESCAPE IAM service.

Welcome to escape


Sign in with your escape credentials									
1	≜ Username								
	Password								
Sign in									
	Forgot your password?								
	Or sign in with								
G	Google								
∜eduGAIN									
Not a member?									
Apply for an account									
Register an account with eduGAIN									
	Info and Privacy Policy								

You have been successfully authenticated as CN=IESS Alberto lkm3sm8x@cnrs.fr,O=Centre national de la recherche scientifique, C=FR, DC=tcs, DC=terena, DC=org This certificate is not linked to any account in this organization

Rucio for Federated Distributed Data Management

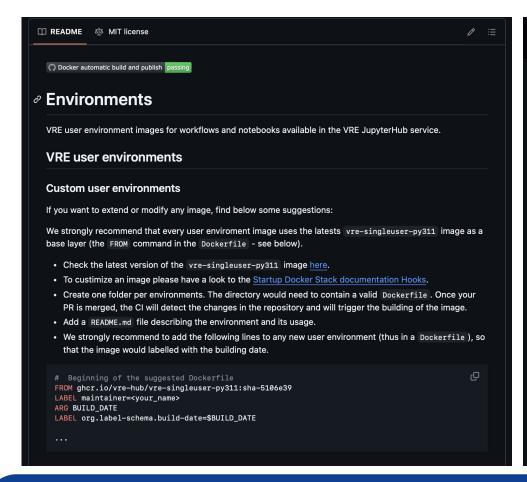
- Distributed Rucio Storage Elements (RSEs).
- Rucio distributed data management system (upload, replication rules, transfer).
- Interaction through docker container or rucio client.
- Authentication through X.509 certificates and OIDC tokens.

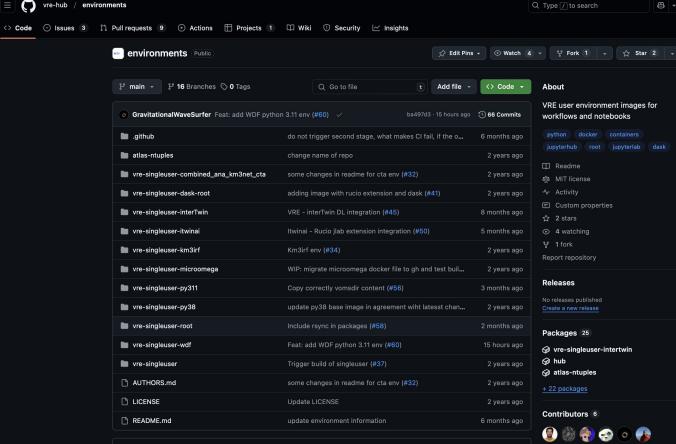
JupyterHub Interface

The ESCAPE VRE offers a JupyterHub interface:

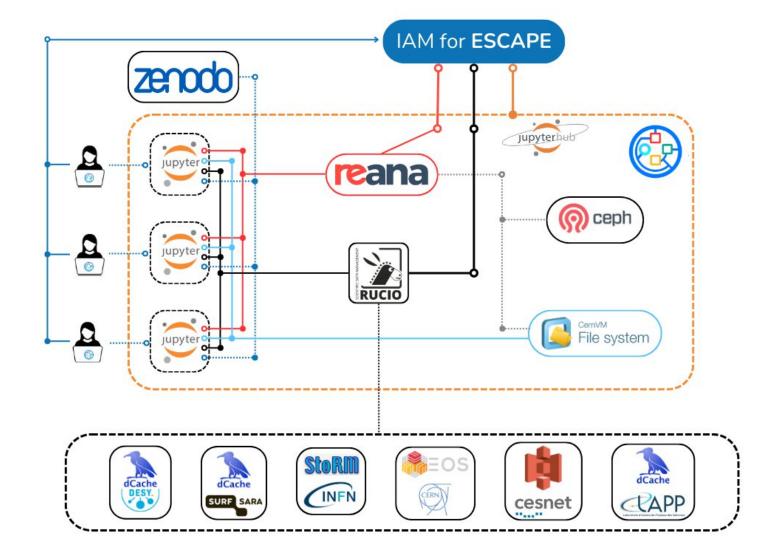
- AAI (credentials, x.509,OpenID)
- Environments encapsulated in Docker images and run as containers.
- Rucio, REANA plugins.
- VREs at <u>CERN</u> and at LAPP (<u>EOSC</u>, <u>internal</u>).
- Documentation.

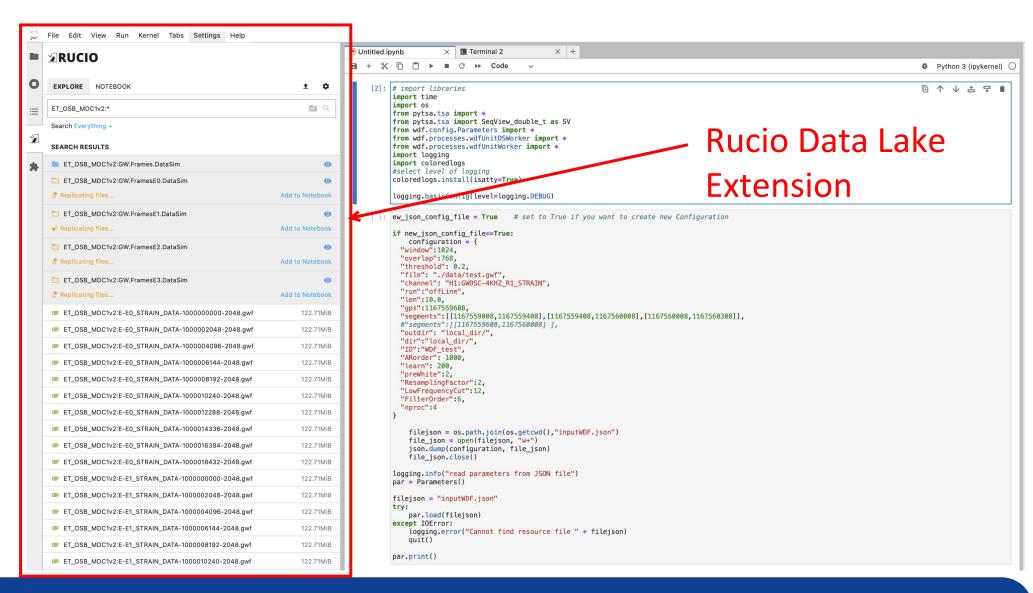
You can select an environment and run a notebook interactively.


Server Options

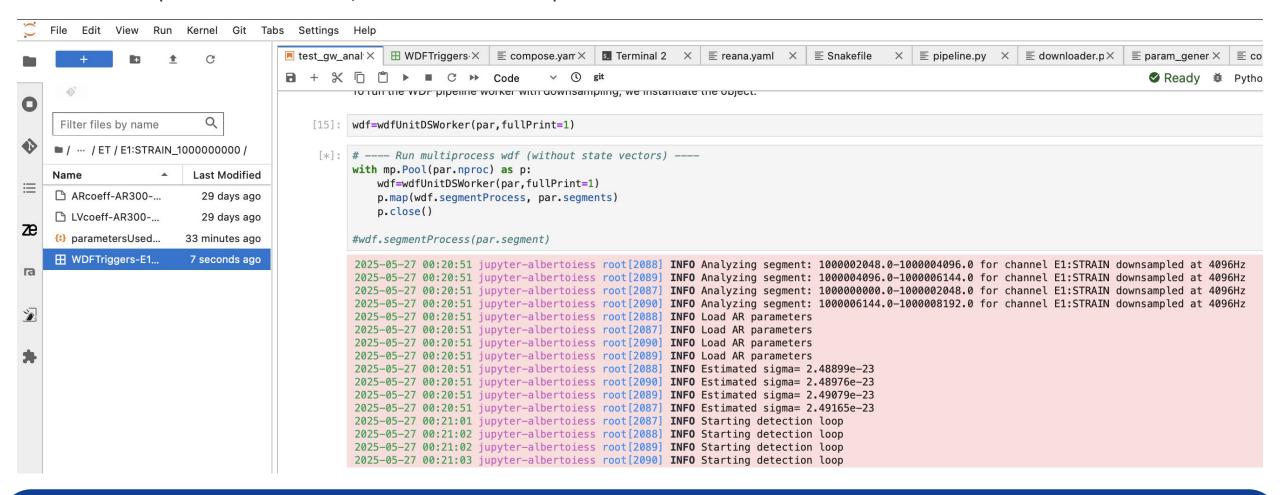

Default environment Based on a scipy notebook environment with a python-3.11 kernel, the Rucio jupyterlab extension and the Reana client installed. **ROOT Higgs 2024 environment** ROOT v6.32.04, and a python-3.11 kernel. ROOT environment Legacy ROOT v6.26.10 as well as a ROOT C++ and a python-3.8 kernel. VIRGO - WDF environment Contains the full WDF v2.2.3 environment and a Python 3.11 kernel. Python 3.11 environment quay.io/jupyter/scipy-notebook:python-3.11 image Default environment - python 3.9 Same environment as the default one except for a python-3.9 kernel installed. This environment will be Default environment - python 3.8 Same environment as the default one except for a python-3.8 kernel installed. This environment will be deprecated soon. KM3Net Science Project environment Contains gammapy=1.1, km3irf and km3net-testdata libraries - Python 3.9 kernel. KM3NeT and CTA combined analysis environment

Environments


Alternatively, add an environment with a pull request, which will be reviewed and eventually merged by the VRE team.



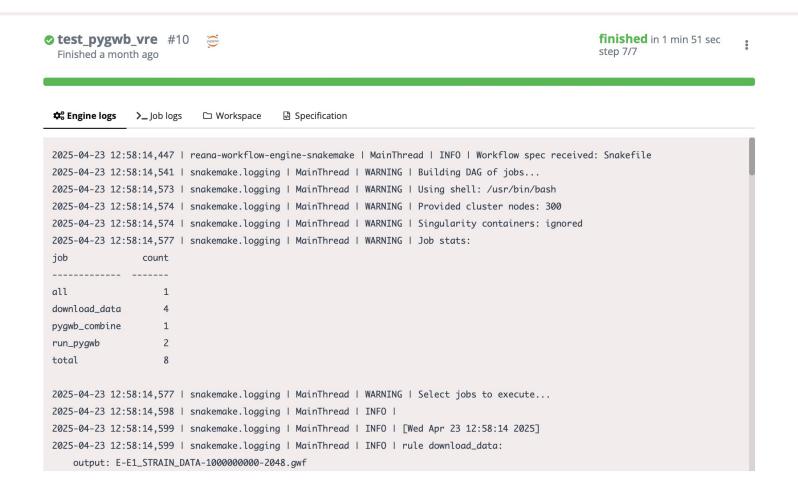
The Full Picture



The JupyterHub interface with Rucio extension facilitates access to data, allowing direct upload to Jupyter Notebooks!

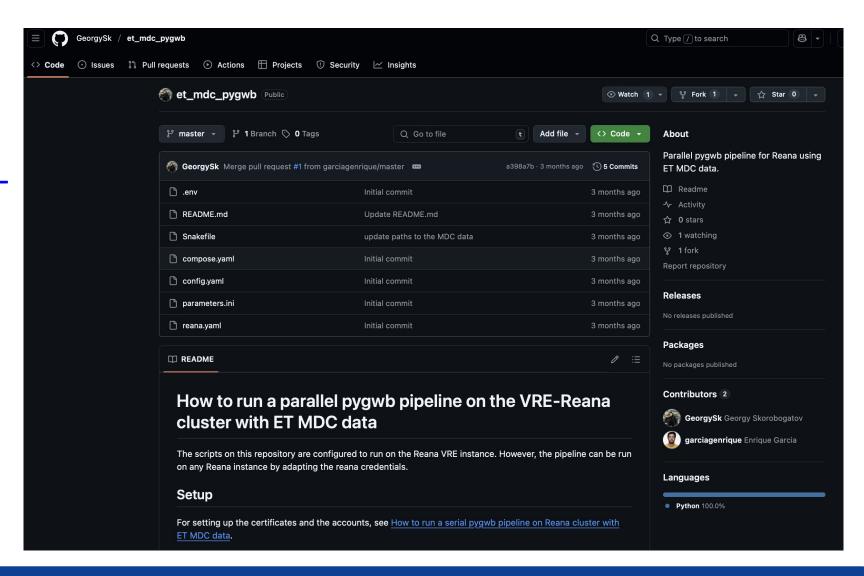
Example: notebook running multiprocess Wavelet Detection Filter pipeline for burst signal detection (Cuoco et al. 2018, Cuoco et al. 2001)

The .csv event trigger file generated by running Wavelet Detection Filter pipeline on the ESCAPE VRE


test_g\	w_anal × ⊞ WDFTrig	gers·× ≣ compose.y	yam× ■ Terminal 2	× ≣ reana.yaml	× ≣ Snakefile ×		≣ downloader.p×	≣ param_gener ×	
limiter:	, ~								
	gps	gpsPeak	duration	EnWDF	snrMean	snrPeak	freqMin	freqMear	freqN
1	1000000002.1875	100000002.3349609	0.249755859375	0.5090096328597434	0.3304358309852966	1.5626154136668986	64.0	265.15384615384613	49
2	100000002.5625	1000000002.590332	0.249755859375	0.5150112307452843	0.32948690698212135	1.3899681034144495	88.0	302.53846153846155	53
3	100000005.5625	100000005.7119141	0.242919921875	0.5260332433303789	0.38063813106407723	1.5293947286777794	56.0	251.69230769230768	48
4	100000005.6875	100000005.7119141	0.249755859375	0.5084603101105939	0.3091762745273994	1.623545971548338	72.0	248.30769230769232	48
5	100000009.0625	1000000009.2770996	0.249755859375	0.5321581103463993	0.348202901526786	1.735695712904407	60.0	251.46153846153845	54
6	100000009.125	1000000009.2770996	0.248046875	0.515084243562685	0.32840622654898083	1.7356709540608741	76.0	260.15384615384613	54
7	100000012.375	100000012.6000977	0.249755859375	0.5812086311386826	0.32150536887667847	1.855986213599196	72.0	270.6923076923077	56
8	100000012.4375	100000012.6000977	0.24560546875	0.5355878675796901	0.3224722419252462	1.8164082288500996	56.0	258.9230769230769	55
9	100000012.5	100000012.6000977	0.219482421875	0.5283963368159178	0.31108966417654255	1.8323184161283326	56.0	278.46153846153845	55
10	100000014.8125	100000015.032959	0.235595703125	0.6082811202060369	0.3924666378908149	2.2688403490803326	60.0	256.2307692307692	50
11	100000014.875	100000015.032959	0.24169921875	0.6437043479061679	0.4213356644600656	2.2444956126386786	68.0	289.3076923076923	52
12	100000014.9375	100000015.032959	0.241943359375	0.6161986213791932	0.4098125173637369	2.227456621365669	64.0	282.53846153846155	50
13	100000015.0	100000015.032959	0.249755859375	0.5287611498376082	0.3541891159173277	2.2030764128831555	76.0	286.0769230769231	54
14	100000015.25	100000015.3498535	0.249755859375	0.5485104527401753	0.34145573075477914	1.6717384709040886	100.0	252.3846153846154	45
15	100000019.6875	1000000019.7192383	0.249755859375	0.5225201461512395	0.3410631793993525	1.8502531300496663	68.0	269.0769230769231	50
16	100000019.75	100000019.8903809	0.243896484375	0.5007517928950685	0.3286354440597249	1.540387518531809	56.0	228.69230769230768	49
17	1000000021.0625	1000000021.2419434	0.24072265625	0.5262832802322703	0.3412362372352981	2.013707989954107	28.0	251.84615384615384	54
18	1000000021.4375	1000000021.6296387	0.249755859375	0.5581610663642006	0.32336850379768367	1.3170298836277476	60.0	219.46153846153845	42
19	1000000021.5	1000000021.6813965	0.248779296875	0.598113337899521	0.3634672927054459	1.5205310713493543	48.0	209.84615384615384	43
20	1000000021.5625	1000000021.6813965	0.238037109375	0.5097732791391584	0.3210342210444631	1.4873077394455962	52.0	212.0	39

For complex reproducible analyses workflows, you can dispatch to REANA cluster.

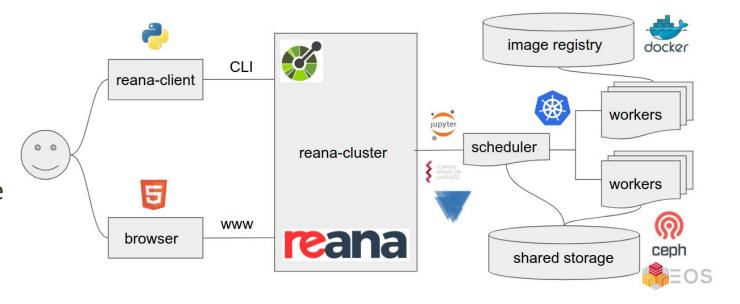
- The REANA JupyterLab extension allow users to interact with the workflow management system from within JupyterLab.
- Reana Rucio integration to directly upload files from a Rucio RSE to the Reana workspace. No need to download files locally from Rucio and then upload them to the Reana workspace.



Nice example:

https://github.com/GeorgySk/et_
mdc pygwb/tree/master

More to come...


- The ESCAPE VRE facilitates the development of end-to-end physics workflows, providing researchers
 with access to an infrastructure and to the digital content necessary to produce and preserve a
 scientific result in compliance with FAIR principles.
- Lower the entry barrier for young researchers through JupyterHub and straightforward data access,
 while allowing experienced researchers to run complex workflows through REANA.
- Open-source and modular, in order to make it easily reproducible by partner institutions.
- Experienced team, willing to help setting up and customizing for diverse scientific communities.
- More in upcoming talks on MADDEN and ETAP OSCARS funded projects.

EXTRA SLIDE: REANA

Reproducible analysis platform for containerised data analysis pipelines on remote compute clouds.

- Supported workflow systems:
 <u>CWLSerial</u>, <u>Snakemake</u>, <u>Yadage</u>
- Supported compute backends:
 <u>HTCondor, Kubernetes, Slurm</u>
- Supported source code and storage systems: GitLab, CVMFS, EOS

