

The World's First Underground Facility for Inter-platform Control and Seismic Isolation in Gravitational-Wave Detection

Coordinating Institutions: GSSI & INFN - LNGS

Collaborators & Technical Advisors

Tomislav Andric (GSSI), Carlo Bucci (INFN), Ilaria Caravella (GSSI), Daniele Cortis (INFN), Nicola D'Ambrosio (INFN), Massimiliano De Deo (INFN), Marco D'Incecco (INFN), Antonio Di Ludovico (INFN), Oliver Gerberding (University of Hamburg), Jan Harms (**PI**; GSSI), Jeff Kissel (LIGO Hanford), Alessandro Lalli (INFN), Brian Lantz (Stanford University), Laura Leonzi (INFN), Carla Macolino (Università di L'Aquila), Rich Mittleman (MIT), Conor Mow-Lowry (VU Amsterdam), Donato Orlandi (INFN), Stefano Pirro (INFN), Marco Ricci (Università di Roma La Sapienza), Jamie Rollins (Caltech), Jim Warner (LIGO Hanford)

Profile

Scientific Focus:

- Development of vibration isolation and inter-platform control systems to support auxiliary DOF stabilization in ET
- Operation and validation of ultra-sensitive inertial sensors in a low-noise underground environment (LNGS)
- Platform for room-temperature and cryogenic testing of next-generation seismometers
- Deployment of a comprehensive underground environmental monitoring system
- Two operation modes:
 - ET Mode: Demonstrate control architecture for ET-LF auxiliary systems
 - LGWA Mode: Emulate lunar seismic and thermal environment for Moon-bound technologies

Scientific Goal 1: ET

- Noise introduced by the control of length and alignment DOFs can limit LF sensitivity
- Develop an inter-platform motion control system to assist the ET length and alignment control of auxiliary degrees of freedom
- Lock all suspension platforms into a common motion across the full central vertex of an interferometer

- This enables stable control of auxiliary cavities
- Enable ET-LF science case
- Refer this optically rigid body to the two input masses

Surface Laboratory

- Integration of sensors and actuators on stage-0 and stage-1 platforms
- Installation and test of realtime system
- Test of control system
- Test stand for spring-blade material characterization
- Assembly and testing in clean environment

Underground Laboratory

- Floor treatment
- Laminar-flow enclosures
- Lifting device for platforms and chamber segments
- Timing signal from surface
- Data transfer to server at the surface
- Preparation of the
 GEMINI hut: it will
 contain the control room
 and a room with clean
 environment to prepare
 installations into the
 GEMINI vacuum system

S

G

S

Vacuum System

Two chambers connected by vacuum pipe. Tunnel entrance dimensions put strong limitations on chamber geometry.

GEM-VCP

•GEMINI Vibration-control Platform

- Starting point of the design: LIGO HAM-ISI - structural adjustments tailored for GEMINI's specific requirements.
- Design modifications, vibration analysis, and executive drawings produced by LNGS mechanical engineers

GEM-VCP: Stage 0

100Hz HAM-ISI (unconstrained) 70Hz GEM-VCP (under load)

Inertial Sensing

Nanometrics T360 GSN Vault (3 per platform, 3 channels each)

Integration in GEM-VCP

Spring Blades

Istitute Nazionale di Fisica Nucleare Ti-19 meets design specs (strength, fatigue, stability) for supporting the load

S

INFN

G

S

ETIC - GEMINI

Position Sensing: COBRI

COmpact Balanced Readout Interferometer - COBRI

O. Gerberding, K.-S. Isleif Sensors 2021, 21(5), 1708

S

INFN

Istituto Nazionale di Fisica Nucleare

G

S

- Required for platform alignment and positioning
- Utilized together with inertial sensing

- On-axis design with quasi-monolithic component Positive:
 - no misalignment in vacuum
 - Large linear range (several centimeters)

Negative:

 On-axis ghost beams cause nonlinearity

05/27/2025

RDK-500B2 20K Cryocooler Series

Performance Specifications

Power Supply	50Hz	60 Hz			
1 st Stage Capacity	45 W @ 20 K	50 W @ 20 K			
Minimum Temperature ¹	<14 K				
Cooldown Time to 20 K ¹	<50 Minutes	<45 Minutes			
Weight	25.0 kg (55.1 lbs.)				
Dimensions (HxWxD)	570 x 180 x 325 mm				
	(22.4 x 7.1 x 12.8 in.)				
Maintenance	8,760 Hours				
Regulatory Compliance	CE, UL/cUL				

Standard Scope of Supply

- RDK-500B2 Cold Head
- F-70LP/H Compressor
- Helium Gas Lines 20 m (66 ft.)
- Cold Head Cable 20 m (66 ft.)
- Power Cable 5 m (16.5 ft.)
- Tool Kit

¹Lowest temperature and cooldown time are for reference only.

Emulate 40K environment for lunar PSR payloads

Ansys
2023 rolThermal link design:
Minimizing the length
of the flexible braided
copper section is
essential

RDK-500B Cold Head Capacity Map (50/60 Hz) With F-70 Compressor and 20 m (66 ft.) Helium Gas Lines

Suspension-platform Interferometer (SPI)

Inter-platform sensing and control to reduce relative motion between platforms (displacement and angular)

INFŃ

tituto Nazionale di Fisica Nucleare

S

G

S

SPI optical assembly

Koehlenbeck et al (2023)

Optical Rigid Body concept using a network of interferometric cavities between stage-0 and stage-1 of both suspended platforms

Multi-cavity topology allows us to measure and suppress all 6 differential DOFs enforcing quasi-rigid motion across platforms

ETIC - GEMINI

S

INFN

Istituto Nazionale di Fisica Nucleare

G

S

a) Electronics displacement noise

b) Leader platform residual motion

c) Required tilt-meter sensitivity

d) Follower platform residual motion

ETIC - GEMINI

GEMINI: The World's First Underground Facility for Interplatform Control and Seismic Isolation in Gravitational-Wave Detection

Abstract

GEMINI is an underground research and development facility dedicated to advancing seismic isolation and control technologies for future gravitational-wave observatories, including the Einstein Telescope (ET) and the Lunar Gravitational-Wave Antenna (LGWA). This paper presents the technical design and theoretical framework of GEM-INI's active seismic isolation platforms, including detailed noise budget analyses, performance predictions, and residual platform motion evaluations. The GEMINI platforms are designed to achieve unprecedented vibration isolation, targeting residual motion levels across the 1 mHz to 10 Hz frequency band, making them the quietest platforms of their kind. In the context of ET, GEMINI will enable the development and validation of inter-platform control strategies essential for the stabilization of auxiliary degrees of freedom in the interferometer's central

INFN Environmental Monitoring System (GEMIN)

Network of barometers for 1mHz to 1Hz observations (underground and surface)

S

stituto Nazionale di Fisica Nucleare

G

S

Tentative Timeline

	2025		2026		2027		2028	
Site preparation								
Installation of sensors and actuators on mechanical platforms (surface)								
Testing of real-time system (surface)								
Installation of vacuum system								
Installation of electronics rack								
Installation of platforms into vacuum system								
Commissioning of active seismic isolation system								
Installation of environmental monitoring system								
Installation of cryocooler, thermal link, cryobox								
Installation of inter-platform interferometer (IPF)								
Commissioning of IPF								