XV ET Symposium

Magnetic Noise and Mitigation Strategies for the Einstein Telescope

B. Garaventa

on behalf of ET-MN team

Contents

Magnetic Noise Introduction

Virgo Investigation strategy

MANET facility

Mitigation strategies

Simulations/activities ongoing

Conclusions

Magnetic Noise Introduction

Limits from few Hz up to 100 Hz in the Einstein Telescope detector

<u>MN source 1</u> Natural terrestrial component (Schumann Resonances pT/\sqrt{Hz})

MN source 2 Environmental noise component of the interferometer (self-inflicted noise)

→ Low-frequency sensitivity improved compared to current GW detectors: specific noise sources reduced (fluctuations of EM field, vibrations and deformations..)

Magnetic Noise in ET

KAGRA

XV ET Symposium

Virgo: Self-inflicted sources

Power Distribution System

EM fields radiated by cables/wires (e.g. HVAC, UPS,..)

Devices

Magnetic fields from electric and electronic devices

Anthropogenic

- Trains (sitewide magnetic glitches from 2-3 km far railways)
- Galvanic currents from methan gas pipes

EGOMONVIRGO

Coupling to Interferometer Results from Virgo and Sos Enattos

https://git.ligo.org/virgo/environment al/couplingfunctions/-/tree/main/O4/Magnetic?ref_type=h eads

https://doi.org/10.3390/galaxies8040082

Max coupling curve from Virgo

M.C. Tringali et al., Magnetic injections: overview and plans, VIR-0300A-24 How to do: $CF(f) = \sqrt{\frac{Y_{inj}^2 - Y_{bkg}^2}{X_{inj}^2 - X_{bkg}^2}}$ $r = \frac{m_V}{m_{ET}} \quad CF_{ET}(f) = r \, CF_V(f)$ $CF_{V,max}(f) = \max_{j=1,2,3} CF_{V,j}(f)$ $h_{FT} = s_{MAC} h_{MAC}$ $X_{C,max} = \frac{1}{s_{MAG}} \frac{L}{2CF_{ET}(f) z_{MAG}(f)}$ Safety factor Shielding function

7

Assumptions:

- s=3, z_{MAG}=0.2
- Only natural magnetic noise for ET

MANET facility

MAgnetic Noise facility for ET:

characterization of the magnetic noise emissions of various devices, analyzing their response to external magnetic fields, and evaluating magnetic mitigation strategies

	Magnetic flux density norm [T]
	4
θ	
	a
6	φ

See Poster

GALILEO Infrastructures for Einstein Telescope: Advanced Quantum Optics Technologies and Magnetic Emission Characterizations - B.-Garaventa

XV ET Symposium

Mitigation Strategies

 Passive shields: simplicity, safer, operational stability, cheaper, less effective (or use multilayers shields)

• Active shields: more effective, only for ad hoc implementations

Shielding factor: $S(x,y,z) = |B_{without_shield}| / |B_{with_shield}|$

Simulations ongoing

10

E

1. Passive Shielding – TM TOWERS– Ferromagnetic Shields (Virgo as reference)

- Test Mass Tower: one of the most sensitive component (Virgo as reference)
- Strategy: High magnetic permeability layer (mumetal has an hysteresis loop) to attract and move magnetic field lines away from the area

See Poster

Magnetic noise mitigation for the Einstein Telescope: optimization of ferromagnetic shielding - F. Armato, B.-Garaventa, A. Chincarini

Frequency	Relative	Shielding Factor	
[Hz]	Permeability	width=1 mm $$	width=2 mm $$
0	57 000	9.89	13.85
10	48 000	8.95	12.87
100	40 000	8.02	11.82
1000	15 000	4.19	6.67

Frequency	Relative	Shielding Factor	
[Hz]	Permeability	width=1 mm $$	width=2 mm
0	57000	4.07	6.10
10	48 000	3.69	5.51
100	40 000	3.34	4.95
1000	15000	2.10	2.88

XV ET Symposium

ET-0208A-25

CINEN

Simulations ongoing

2. Passive Shielding - TM TOWERS- Shields with Eddy currents (Virgo as reference)

XV ET Symposium

https://doi.org/10.3390/galaxies13010009

Simulations ongoing

3. Passive Shielding – Faraday Isolator Shielding

COMSOL simulation

Prototype

XV ET Symposium

<u>ET-026A-23</u> ET-0016A-2

Activities ongoing: Cagliari INFN and UniCa

<u>**Team:</u></u> Prof. Giuseppe Muscas Dr. Francesco Congiu Prof. Giorgio Concas</u>**

Running activities

- Prototype coatings magnetic characterization
 - (collaboration with Core-Optics activities)
- Characterization of magnetic properties of steel for structural components
- Investigation of materials for magnetic noise shielding

M(H) curve at 2 K of 444 commercial steel

XV ET Symposium

EInstein Telescope

Characterization setup:

Physical Property Measurement System (Dynacool)

- DC Magnetization vs Temperature (2-400 K)
- Magnetization vs field (up to 9 T)
- AC magnetic susceptibility vs frequency up to 10'000 Hz

Conclusions

Many MN activities ongoing

MN requirements for ET:

- Using the coupling functions measured at Virgo, and assuming the self-inflicted noise of the ET site negligible, it will be necessary to mitigate magnetic noise coupling by a factor of 100 in the low frequency range below 10 Hz -> It's not enough to use only passive shielding -> Reduce the coupling at the magnets.
- Based on the experience of Virgo and KAGRA, the site anthropogenic noise and infrastructure noise can contribute significantly.
- Need to implement mitigation strategies (shielding) and an intrinsic quiet anthropogenic noise.

Thanks for the attention!

You can find us at:barbara.garaventa@ge.infn.itirene.fiori@ego-gw.it

XV ET Symposium