

Locked cavity scan using heterodyne detection with a phase camera

Ricardo Cabrita

Aaron Goodwin-Jones, Joris van Heijningen, Pavel Demin, Martin van Beuzekom, Matteo Tacca, Giacomo Bruno, Clement Lauzin

Increasing circulating power in GW detectors

Next generation detectors

Increasing circulating power in GW detectors

Next generation detectors

Current detectors

Arm circ. power	LIGO A+	AdV +
design	750 kW	150 kW
actual	350 kW	96 kW

Increasing circulating power in GW detectors

Next generation detectors

Power losses to

- scattering,
- point defects,
- ITF working point degradation over 6 hour thermal transient in LIGO.

(some) issues with high optical power

Thermal effects can shift the cavity eigenmodes

(some) issues with high optical power

Cavities with high circulating power...

With continuous wave laser....

$$I = \frac{2P}{\pi w_0^2}$$

Group	Tot. Pwr. (MW)	Intensity (MW/cm ²)	Waist (mm)	Application
H. Mueller:	0.14	123000	0.0085	PEM/dipole trapping
LIDA	0.124	4700	0.0285	Dark matter detection
LIGO	0.350	0.154	12	GW detection
IJClab (ps laser)	0.710	0.56	9	Extreme radiation/accelerators
Photodetachment	10	636	1	Fusion reactor – neutral beam
ET (CE)	3	0.95	14.2	GW detection

Cavities with high circulating power...

With continuous wave laser....

$$I = \frac{2P}{\pi w_0^2}$$

Group	Tot. Pwr. (MW)	Intensity (MW/ cm^2)	Waist (mm)	Application
H. Mueller:	0.14	123000	0.0085	PEM/dipole trapping
LIDA	0.124	4700	0.0285	Dark matter detection
LIGO	0.350	0.154	12	GW detection
IJClab (ps laser)	0.710	0.56	9	Extreme radiation/accelerators
Photodetachment	10	636	1	Fusion reactor – neutral beam
ET (CE)	3	0.95	14.2	GW detection

unique to GW detection: Combination of high power with very low losses!

Mode sensing and control in Virgo

Transverse mode control in quantum enhanced interferometers: a review and recommendations for a new generation

AARON W. GOODWIN-JONES,^{1,2,*} ^(D) RICARDO CABRITA,³ ^(D) MIKHAIL KOROBKO,⁴ ^(D) MARTIN VAN BEUZEKOM,⁵ DANIEL D. BROWN,^{1,6} VIVIANA FAFONE,^{7,8} ^(D) JORIS VAN HEIJNINGEN,³ ALESSIO ROCCHI,⁸ ^(D) MITCHELL G. SCHIWORSKI,^{1,6} ^(D) AND MATTEO TACCA⁵ ^(D)

- No feedback loop
- No way to online monitor thermal transient.

Locked cavity monitoring with the phase camera

Optical injection scheme + phase camera

- Monitoring cavity g-factor while locked
- Test phase sensitive measurements of HOMs – for PI suppression of HOM of arbitrary order

Locked cavity monitoring with the phase camera

۲

٠

Table-top set-up at **UCLouvain**

- Invar bar cavity (open air) -
- 32 cm, (nominal) Finesse 360 -

Locked cavity monitoring with the phase camera

- Scanning EOM2 modulation frequency injects sideband HOM at key frequencies

- Invar bar cavity (open air)
- 32 cm, (nominal) Finesse 360

 O. Schwartz – 1st order mode injection to characterize cavity concentricity (phase-contrast electron microscopy) [6]

Heterodyne scan results

Acquisition limited to 250 MHz but cavity FSR is 467 MHz – LSB probes first half of FSR and USB probes second half of FSR

18

Cavity g-factor measurement while locked

Fit mode positions for LSB:

$$f_{LSB}(m+n) = \text{FSR}_{v} \frac{m+n}{\pi} \arccos(1 - L/\text{RoC})$$

Fit mode positions for USB

$$f_{USB}(m+n) = \text{FSR}_{v} - \text{FSR}_{v} \frac{m+n}{\pi} \arccos(1 - L/\text{RoC})$$

Mode fitting results....

Mirror RoC 0.501992 ± 0.000070 m

Cavity length 0.321518 ± 0.000030 m

Cavity FSR 466.213 ± 0.043 MHz

Cavity g-factor 0.35951 \pm 0.00017 MHz

Cavity g-factor measurement while locked

Fit mode positions for LSB:

$$f_{LSB}(m+n) = \text{FSR}_{\nu} \frac{m+n}{\pi} \arccos(1 - L/\text{RoC})$$

Fit mode positions for USB

$$f_{USB}(m+n) = \text{FSR}_{v} - \text{FSR}_{v} \frac{m+n}{\pi} \arccos(1 - L/\text{RoC})$$

Mode fitting results....

Mirror RoC 0.501992 ± 0.000070 m

Cavity length 0.321518 ± 0.000030 m

Cavity FSR 466.213 \pm 0.043 MHz

Cavity g-factor 0.35951 \pm 0.00017 MHz

Different modes experience different round-trip losses (RTL):

- can be exploited to make RTL map.

	FWHM [MHz]	RTL [%]
-	1.75 ± 0.07	0.66
۲	1.83 ± 0.08	0.77
۲	1.57 ± 0.09	0.42
۲	1.68 ± 0.16	0.57
۲	1.74 ± 0.26	0.64
۲	1.74 ± 0.044	0.65
0	1.76 ± 0.046	0.67
۲	1.70 ± 0.083	0.60

Phase sensitive measurements

- Phase of EOM2 modulating sine is swept.
- Phase camera retrieves optical beating phase between carrier and sideband HOM – arctan(Q/I)

- Phase camera can be used for PI suppression of arbitrary HOMs
- Can also be used for mode mismatch and misalignment signals in transmission

 $\Phi_{beat} = \Delta R - \Delta G + \Delta L + \Delta K + \Delta \phi_{M0}$

Towards the MW goal in next generation detectors

Preprint available on arXiv: https://arxiv.org/abs/2505.03525

We propose testing the technique at Virgo

ET-OPT @ UCLouvain Poster by Dr. Aaron Goodwin-Jones

[1] M.Evans et al., "Observation of parametric instability at LIGO" Phys. Rev. Lett. 114, 161102 (2015) [2] V. Bossilkov, Jian Liu et al., "Demonstration of the parametric instability suppression through optical feebdack" Rev. D 109, 102006 (2024)

[3] A. W. Goodwin-Jones, R. Cabrita, et al., "Transverse mode control in guantum enhanced interferometers: a review and recommendations for a new generation," Optica 11, 273-290 (2024)

[4] A. W. Goodwin-Jones, H. Zhu, et al., "Single and coupled cavity mode sensing schemes using a diagnostic field," Opt. Express 31, 35068-35085 (2023)

[5] M. Beaumont, I. Ventrillardet, et al., "Optical cavity spectroscopy using heterodyne detection with optical feedback laser frequency locking," Appl. Opt. 63, 2227-2233 (2024)

[6] O. Schwartz, J. J. Axelrod, S. L. Campbell, et al., "Laser phase plate for transmission electron microscopy," Nat.methods 16, 1016–1020 (2019)

Extra Slides

Noise and detection limits

Power in sideband HOM in decibels relative to carrier [dBc]:

Mode basis changes and higher order modes

PDH + second sideband modulation

- PDH frequency = 50 MHz.
- The PDH lock is unaffected except for scanning frequencies at the PDH frequency times n (natural number).