

Ground Motion Analysis for the Einstein Telescope: ShakeMap, Seismic Hazard, and Case Studies

$\bullet \bullet \bullet$

Licia Faenza, Marco Olivieri, Carlo Giunchi, Carlo Meletti INGV

Seismic Hazard Prospective

Historical and Instrumental seismicity

ShakeMap Scenario test example

Ground Motion at the depth the ET

What Is Probabilistic Seismic Hazard Analysis (PSHA)?

PSHA estimates the likelihood of different levels of ground shaking occurring at a site over a given time period.

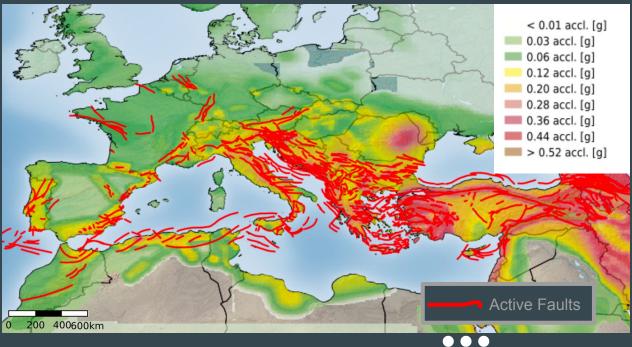
It considers:

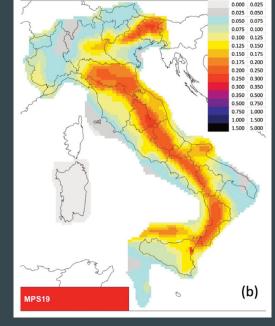
- All possible earthquake sources (faults and regions)
- A range of magnitudes and distances
- Uncertainty in seismic activity and ground motion

Importance:

- Provides a scientific basis for seismic design codes
- Supports decision-making for critical infrastructure
- Enables risk-based comparison across sites and regions
- Fundamental input for seismic risk analysis

Probabilistic Seismic Hazard Models

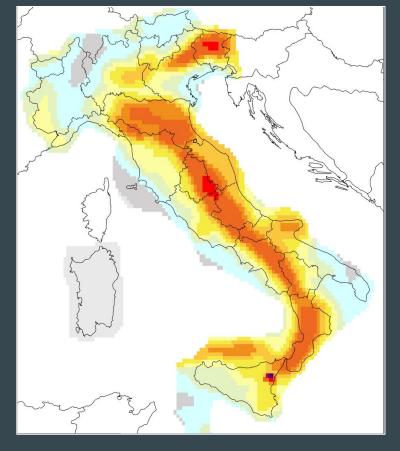

ESHM20: European model (Danciu et al., 2024)

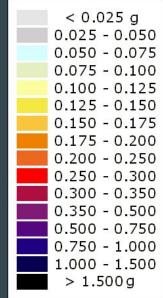

- Continental-scale
- Unified earthquake catalog Fault and distributed sources
- Spectral accelerations for multiple return periods
- Used as reference for risk analysis at \bullet European level

MPS19: Italian national model (Meletti et al., 2019)

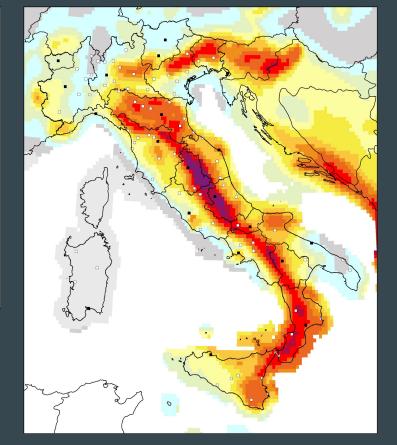
- High-resolution model tailored to Italy Based on CPTI15 catalog and Italian fault database
- **Region-specific GMMs**
- Spectral accelerations for multiple return periods
- Updated hazard model for Italy

Both developed with broad expert consensus and **collaborative** efforts by leading **experts** in the field of seismic hazard assessment across Europe and Italy.

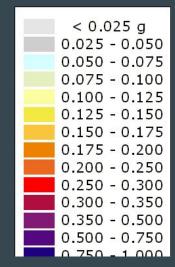




ESHM20 http://www.hazard.efehr.org/en/home/

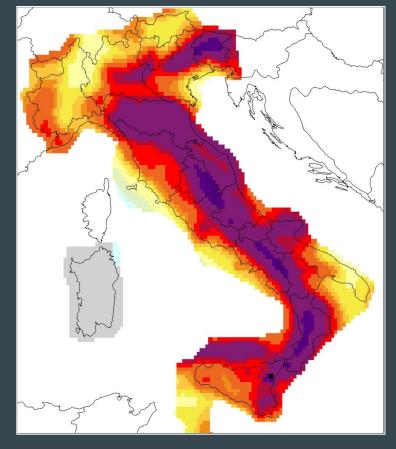

Seismic Hazard Map 10% in 50 years (statistical return period of 475 years) on **rock soil**

MPS19



 $\bullet \bullet \bullet$

MPS19 PGA 10% prob. exc. in 50 years Return period 475 years **ESHM20** PGA 10% prob. exc. in 50 years Return period 475 years

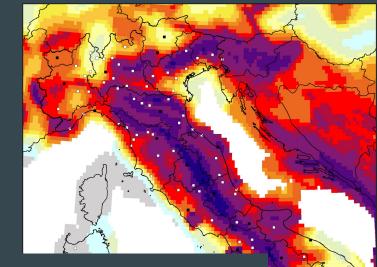

 \rightarrow Extremely low seismic hazard

MPS19

PGA 10% prob. exc. in 50 years Return period 475 years

ESHM20

PGA 10% prob. exc. in 50 years Return period 475 years



 $\bullet \bullet \bullet$

MPS19 PGA 2% prob. exc. in 50 years Return period 2475 years

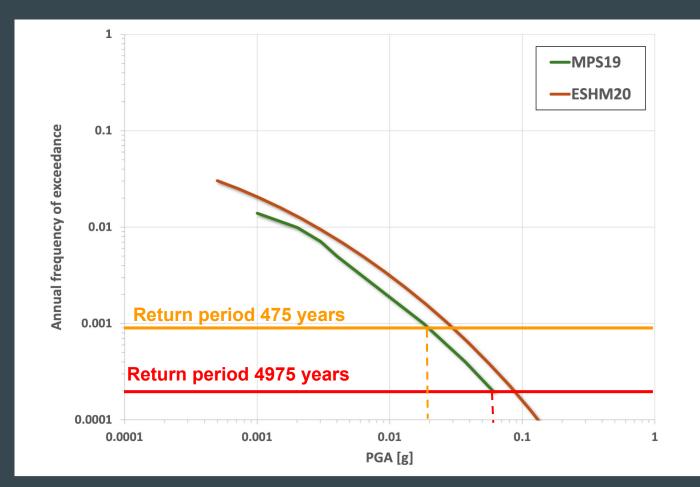
ESHM20

PGA 2% prob. exc. in 50 years Return period 2475 years < 0.025 g 0.025 - 0.050 0.050 - 0.075 0.075 - 0.100 0.100 - 0.125 0.125 - 0.150 0.150 - 0.175 0.175 - 0.200 0.200 - 0.250 0.250 - 0.300 0.300 - 0.350 0.350 - 0.500 0.500 - 0.750

2475-year return period: PGA in the range of 0.050-0.075 g

the for

 \rightarrow It remain extremely low seismic hazard


MPS19

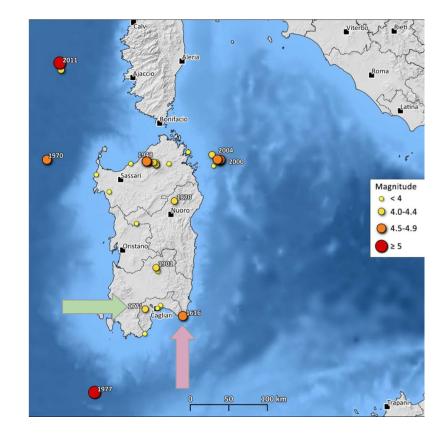
PGA 2% prob. exc. in 50 years Return period 2475 years

ESHM20

PGA 2% prob. exc. in 50 years Return period 2475 years

HAZARD CURVE

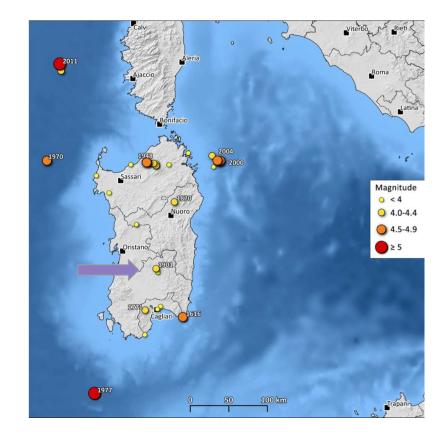
Probabilistic Seismic Hazard Models


Interpretation:

- This is considered very low shaking
- Comparable to barely perceptible motion for humans
- Far below design thresholds for structural safety

Why it matters:

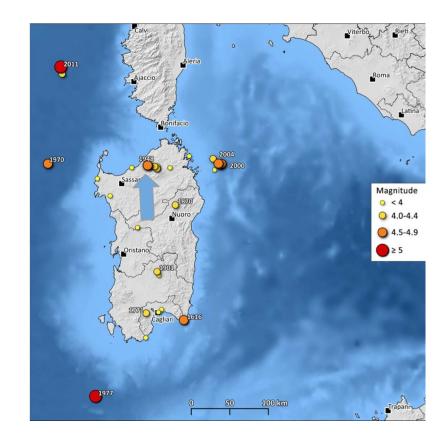
- Guarantees a seismically quiet environment
- Ensures minimal vibrational noise for operations


- Two most significant confirmed events:
 1616 (South-East Sardinia, M ~4.9)
 1771 (Cagliari area, moderate magnitude)

- Two most significant confirmed events:
 1616 (South-East Sardinia, M ~4.9)
 1771 (Cagliari area, moderate magnitude)

sequence re-evaluated: Previously undocumented mainshock identified

(3 events, with maximum magnitude 4.2)



- Two most significant confirmed events:
 1616 (South-East Sardinia, M ~4.9)
 1771 (Cagliari area, moderate magnitude)

sequence re-evaluated: Previously undocumented mainshock identified (3 events, with maximum magnitude 4.2)

1948 sequence:

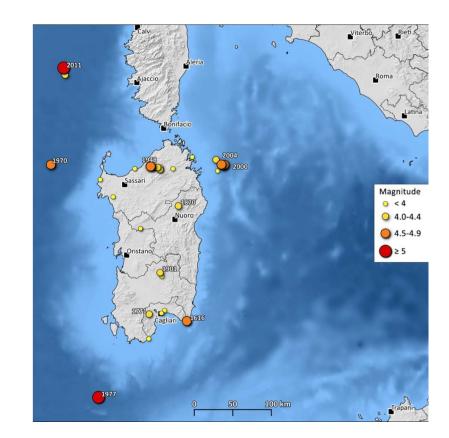
Improved documentation and understanding

Two most significant confirmed events: 1616 (South-East Sardinia, M ~4.9)

- (Cagliari area, moderate magnitude)

sequence re-evaluated: Previously undocumented mainshock identified (3 events, with maximum magnitude 4.2)

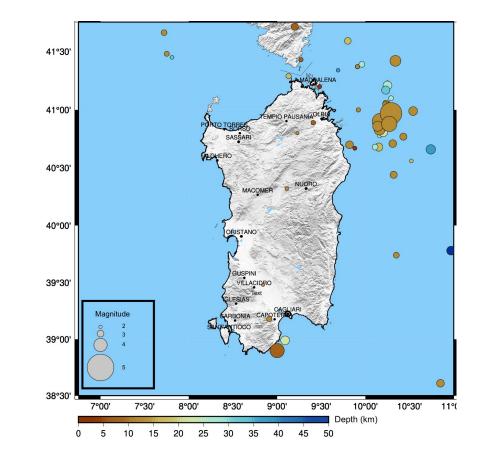
1948 sequence:


Improved documentation and understanding

Clarification of doubtful events:

- \bullet
- 1835: Possibly real, but minor 1838, 1855, 1898: Proven non-existent

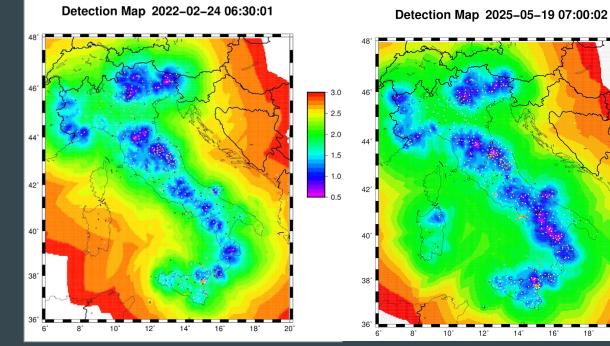
Other 19th–20th century events (1870, 1906, 1922, 1924):


Low magnitude, no macroseismic effects

Instrumental Seismicity of Sardinia (from 1985 to the present day)

A few dozen earthquakes were recorded and in four cases magnitude 4 was exceeded

- in the north-east there were two earthquakes on 26 April 2000 (magnitude 4.2 at 13:28 and magnitude 4.7 at 13:37)
- in the north-east the magnitude **4.3** earthquake of **18 December 2004**.
- South of Sardinia was the magnitude **4.1** earthquake of **24 March 2006**.

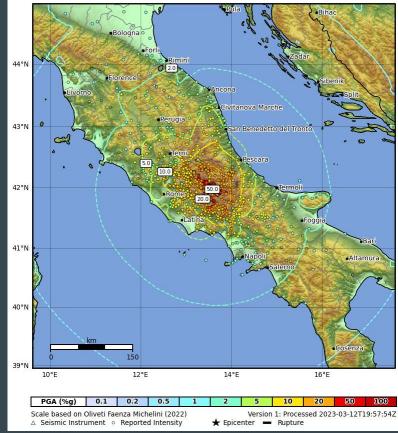


Instrumental Seismicity of Sardinia (from 1985 to the present day)

Improvement of the minimum detected magnitude of the Italian National Network

Based on

- the number of stations
- the geometry of the network
- the background noise level


Earthquake Scenario Modelling

- Italy has an exceptionally detailed knowledge of seismicity, with historical records extending several centuries into the past.
- In the absence of known active faults in Sardinia, we relied on the Italian historical earthquake catalogue to develop scenario-based models.
- A strong historical earthquake from Central Italy was selected as a conservative scenario, representing one of the largest events in the national catalogue, able to be felt in Sardinia

Earthquake Scenario Modelling

Peak Ground Acceleration Map INGV ShakeMap: Marsica - Intensity data from Molin et al., 1999b

Jan 13, 1915 06:52:43 UTC M7.1 N42.01 E13.53 Depth: 10.0km ID:19150113_0652_000

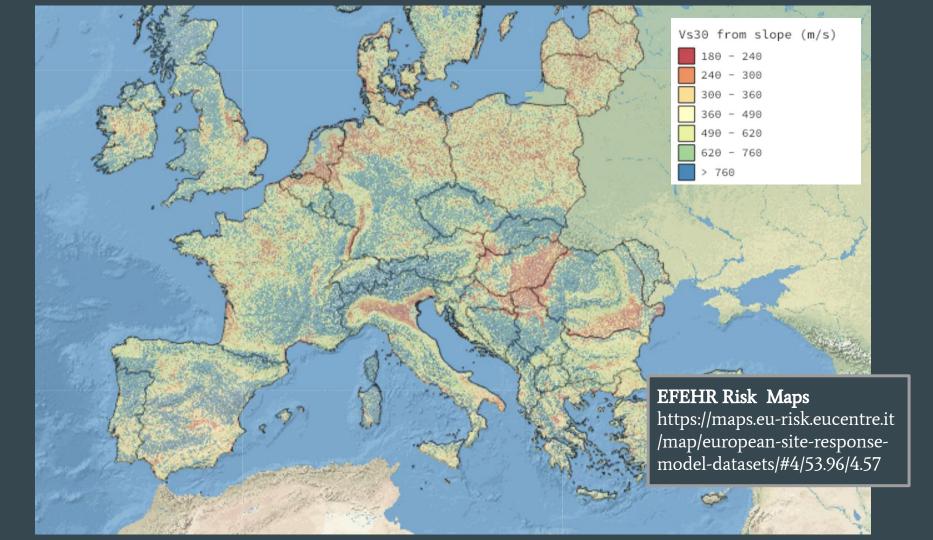
https://shakemap.ingv.it/

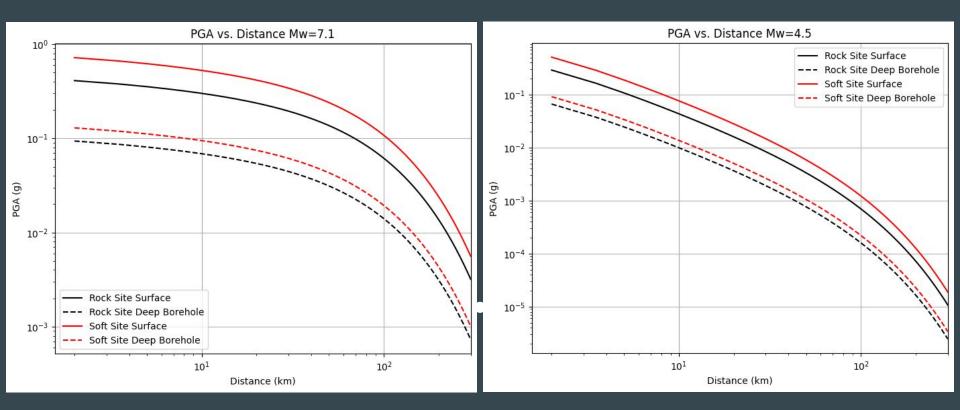
Earthquake Scenario Modelling

100

SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
DAMAGE	None	None	None	Very light	Light	Moderate	Moderate/heavy	Heavy	Very heavy
PGA(%g)	<0.0555	0.232	1.21	3.38	7.46	14.5	26.1	44.4	>72.3
PGV(cm/s)	<0.0178	0.0939	0.686	2.08	5.06	10.9	21.6	40.3	>71.7
INTENSITY		11-111	IV	۷	VI	VII	VIII	DX.	XX+
Scale based on Oliveti Faenza Michelini (2022) △ Seismic Instrument ◇ Reported Intensity ★ Epicenter □ Rupture									

https://shakemap.ingv.it/


Estimating Ground Motion at Depth


Accurate ground motion estimation at depth requires multiple borehole recordings to calibrate a site-specific model (GMM)

- \rightarrow Not available for Sardinia
- \rightarrow Japanese KiK-net network

Rodriguez-Marek et al. (2011) developed a GMM that quantifies ground motion both at the surface and at borehole depth:

- Deep Borehole (>150m)
- Depth where shear-wave velocity reaches rock values
- Shear-wave velocity at the bedrock
- Vs30

Decrease of 23% for ROCK SITE and 18% for SOFT SOIL

Summary of Key Findings

Exceptionally low seismic hazard

- PGA consistently < 0.03 g for return periods up to 475 years
- Even at 2,475 years: values remain < 0.075 g
- Far below critical design thresholds for sensitive facilities

Stable continental region

- Rock conditions confirmed at ET tunnel depth
- Ground motion at depth significantly lower than at the surface

Comprehensive historical and instrumental data

- Centuries of documented seismicity
- No active faults in the region

Summary of Key Findings

Exceptionally low seismic hazard

lacksquare

lacksquare

Stał

Cor

- Why It Matters for Einstein Telescope
 - Guarantees a **seismically quiet environment**
 - Ensures **minimal vibrational noise** at operating depth
 - Meets the **highest scientific and engineering standards** for
 - for site selection

- Centuries of documented seismicity
- No active faults in the region