

Theory-agnostic searches of non-gravitational modes in black hole ringdown

Based on F. Crescimbeni, X. Jimenez-Forteza, S. Bhagwat, J. Westerweck, and P. Pani arxiv.org/pdf/2408.08956

Francesco Crescimbeni

Sapienza University of Rome & INFN Roma1

Teongrav

Introduction to black hole spectroscopy and deviations of General Relativity;

- > novel theory-agnostic test for ringdown;
- \succ forecast with future detectors;

 \triangleright conclusions and future developments.

Credits: Max Planck Institute

Black Hole Spectroscopy in a nutshell

 \blacktriangleright At intermediate time after the merger, we can model the signal of the ringdown as a superposition of damped sinusoids [Berti+, 0905.2975]:

$$h(t) = \sum_{i=(l,m,n)} A_i \cos\left(2\pi f_i^{\text{Kerr}} t + \phi_i\right) e^{-\frac{t}{\tau_i^{\text{Kerr}}}}$$

 $\geqslant 1 = 2, 3, \ldots$ and $m = -1, \ldots, +1$ are respectively the angular and the azimuthal index, and $n = 0, 1, \ldots$.. is the overtone index.

Where do GR deviations enter in the ringdown?

$$h(t) = \sum_{i} A_{i} \cos\left(2\pi f_{i}^{\text{Kerr}}(1+\delta f_{i})t+\phi_{i}\right) e^{-\frac{t}{\tau_{i}^{\text{Kerr}}(1+\delta\tau_{i})}} + \sum_{i} \hat{A}_{i} \cos\left(2\pi \hat{f}_{i}t+\hat{\phi}_{i}\right) e^{-t/\hat{\tau}_{i}}$$

$$(1)$$

$$(2) \qquad (2) \qquad$$

(1) Modifications of the Kerr QNMs (1):

$$f_i = f_i^{\text{Kerr}} (1 + \delta f_i)$$

(2) the existence of extra modes in the gravitational signal, that can be excited during the ringdown [Molina-Pani-Cardoso-Gualtieri, 1004.4007; Lestingi-D'Addario-Sotiriou, appeared today on arxiv!].

$$\tau_i = \tau_i^{\mathrm{Kerr}} (1 + \delta \tau_i)$$

Novel theory-agnostic test for non-gravitational modes

$$h(t) = \sum_{i} A_{i} \cos\left(2\pi f_{i}^{\mathrm{Kerr}}(1+\delta f_{i})t + \phi_{i}\right) e^{-\frac{t}{\tau_{i}^{\mathrm{Kerr}}(1+\delta\tau_{i})}} + \sum_{i} \hat{A}_{i} \cos\left(2\pi \hat{f}_{i}t + \hat{\phi}_{i}\right) e^{-t/\hat{\tau}_{i}}$$

- First term: neglect the GR deviation (well studied and constrained by LVK ringdown test);
- Second term:

$$\hat{f}_i = f_i^{\text{Kerr}, s=0} (1 + \delta \hat{f}_i), \qquad \hat{\tau}_i = \tau_i^{\text{Kerr}, s=0} (1 + \delta \hat{\tau}_i)$$

but since the amplitudes of the scalar depend on the power of the coupling constant, we reduce to:

$$h(t) = \sum_{i} A_{i} \cos\left(2\pi f_{i}^{\mathrm{Kerr}}t + \phi_{i}\right) e^{-\frac{t}{\tau_{i}^{\mathrm{Kerr}}}} + \sum_{i} \hat{A}_{i} \cos\left(2\pi f_{i}^{\mathrm{Kerr,s=0}}t + \hat{\phi}_{i}\right) e^{-t/\tau_{i}^{\mathrm{Kerr,s=0}}}$$

Frequencies and damping times of GR vs extra modes

 χ_f

 \succ Frequency is higher \rightarrow easy to resolve.

 \triangleright Damping time is similar \rightarrow longer-lived than gravitational overtones.

Theory-agnostic searches of non-gravitational modes in black hole ringdown

 χ_f

> We compute the minimum ringdown SNR, for detectability of an extra scalar mode in the ringdown signal.

> This is imposed by $\sigma(A_{R,220}) = A_{R,220}$.

Conclusions and future developments

Summary:

We proposed a novel test to detect putative extra fundamental modes.

 \blacktriangleright Future detectors should have the required sensitivity to detect/constrain such modes.

Next steps:

> Apply this for a specific theory (e.g. dynamical Chern Simons) [Crescimbeni-Forteza-Pani, in] prep.]

$$h(t) = \sum_{i} A_{i} \cos\left(2\pi f_{i}^{\mathrm{Kerr}}(1+\delta f_{i})t + \phi_{i}\right) e^{-\frac{t}{\tau_{i}^{\mathrm{Kerr}}(1+\delta\tau_{i})}} + \sum_{i} \hat{A}_{i} \cos\left(2\pi \hat{f}_{i}t + \hat{\phi}_{i}\right) e^{-t/\hat{\tau}_{i}}$$

Thank you for your attention!

Back-up slides

Gravity modification: an overview

Standard tests of General Relativity: study term (1)

CURRENTLY UNBEATEN PATH: EXPLORE TERM (2)

Compute QNMs in a given theory (can be done in small coupling limit and perturbatively in the

An explicit example: dynamical Chern-Simons

Let's consider the Chern-Simons action [Alexander-Yunes, 0907.256] (in units G=c=1): \bullet

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} R - \frac{1}{2} \int d^4x \sqrt{-g} g^{ab} \nabla_a \vartheta \nabla_b \vartheta + \frac{\alpha}{4} \int d^4x \sqrt{-g} \vartheta R R$$

where we define
$$*RR = \frac{1}{2}R_{abcd}\epsilon^{baef}R^{cd}_{ef}$$
.

The Einstein-Hilbert action is modified by adding a parity-violating Chern-Simons term, which \bullet couples to gravity via a scalar field.

An explicit example: dynamical Chern-Simons

Axial perturbations of the metric are coupled to those of the scalar field, and in the frequency domain they are given by:

$$\frac{d^2}{dr_{\star}^2}\Psi + \left\{\omega^2 - f\left[\frac{l(l+1)}{r^2} - \frac{6M}{r^3}\right]\right\}\Psi = \frac{96\pi\,Mf}{r^5}\alpha\Theta,$$

$$\frac{d^2}{dr_{\star}^2}\Theta + \left\{\omega^2 - f\left[\frac{l(l+1)}{r^2}\left(1 + \frac{576\pi M^2\alpha^2}{r^6}\right) + \frac{2M}{r^3}\right]\right\}\Theta = f\frac{(l+2)!}{(l-2)!}\frac{6M\alpha}{r^5}\Psi$$

$$\vartheta = \frac{\Theta^{\ell m}}{r}Y^{\ell m}e^{-i\omega t}\Phi$$

We defined:

$$f(r) = 1 - 2M/r \qquad r,$$

Decoupling limit (α =0): obtain the standard Regge-Wheeler equation + scalar-perturbation equation of a Schwarzschild BH, respectively.

$r_{\star} \equiv r + 2M \ln \left(r/2M - 1 \right)$

An explicit example: dynamical Chern-Simons

There are both gravity and scalar-driven modes:

This leads to a system which acts as a coupled oscillator, with signal:

$$h(t) = \sum_{j} A_{j} e^{i(\omega_{j}t + \phi_{j})} + \sum_{j} \hat{A}_{j} e^{i(\hat{\omega}_{j}t + \hat{\phi}_{j})}$$

Ringdown + extra mode parameters and nomenclature

- \blacktriangleright We focus on the most constrained (1 = 2, m=2) case and neglect spin precession of the progenitor binary.
- \blacktriangleright The ringdown waveform has the dependence on the following parameters:

$$\underline{\theta} = \{M_f, \chi_f, A_{22j}, \phi_{22j}, \hat{A}_2^s\}$$

where j=1, ..., N, with N the number of overtones.

We denote a model with:

- N gravitational tones and no extra mode GRN;
- N gravitational tones and an extra scalar (vector) mode as GRN+S (GRN+V).

 $\{\hat{\phi}_{220}^{s=0,1}, \hat{\phi}_{220}^{s=0,1}\}$

 \blacktriangleright For the analysis, we need to vary the starting time with respect to the peak of the waveform (in general, for a given model, there should be a valid starting time [Bhagwat+, 1910.08708; Crescimbeni-Carullo+, in prep.]).

> We use a gated-and-inpainted Gaussian likelihood noise model to remove the influence of the pre-peak/non-ringdown times [Zackay+, 1908.05644].

$$t \in [t_c + t_{\text{offset}} - 0.5, t_c - 0.5]$$

The strain data within a time interval are replaced/inpainted such that the filtered inverse power spectral density is zero at all the times corresponding to the chosen interval.

 $+ t_{\text{offset}}$

Real data results

→ GW150914: golden event, still largest ringdown SNR, overtone debate [Isi+, Cotesta+...] → GW190521: upper mass gap, tentative detection of l=3 mode [Capano+ 2021] ➢ GW200129: "false" GR deviations, tentatively ascribed to precession [Maggio+ 2022]

 \blacktriangleright no strong evidence for an extra scalar or vector mode.

Detectability, resolvability, and measurability criteria for BH spectroscopy

For a 2-mode or 2-tone ringdown model we define the following criteria [Forteza+, 2005.03260]:

Detectability \rightarrow require that: ${\color{black}\bullet}$

$$\sigma_{A_R} < A_R$$

where A_{R} is the ratio between the amplitude of the subdominant and the dominant mode.

Resolvability \rightarrow traditional Rayleigh resolvability criterion that was introduced in the context of BBH ringdown \bullet [Berti-Cardoso-Will]:

$$\max[\sigma_{f_{220}}, \sigma_{f_{sub}}] < |f_{220} - f_{sub}|$$
$$\max[\sigma_{Q_{220}}, \sigma_{Q_{sub}}] < |Q_{220} - Q_{sub}|$$

Measurability \rightarrow

$$\begin{cases} \frac{\sigma_{f_{220}}}{f_{220}}, \frac{\sigma_{Q_{220}}}{Q_{220}}, \frac{\sigma_{f_{\text{sub}}}}{f_{\text{sub}}} \end{cases} \leq T \quad \text{, with T a given} \\ \begin{cases} \frac{\sigma_{f_{220}}}{f_{220}}, \frac{\sigma_{Q_{220}}}{Q_{220}}, \frac{\sigma_{Q_{\text{sub}}}}{Q_{\text{sub}}} \end{cases} \leq T \end{cases}$$

$$Q_{lmn} = \pi f_{lmn} \tau_{lmn}$$

threshold.

High SNR limit for LVK

We compare some representative posterior distributions obtained from the Bayesian inference on real data with forecasts using injections at higher SNR (equal to 100).

GW190521 analysis with the inclusion of precession

