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Introduction

• PINNGraPE is a ML algorithm which performs PE on CBC burst 
unmodeled signals.

• Based on Physics Informed Neural Networks.

• It is developed for LVK, but the technique could be exploited in ET.
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Introduction: cWB

• cWB is an unmodeled pipeline used by LVK 
collaboration [1].

• Unmodeled: based on pure coherence between 
energy pixels in the frequency domain.

• No theoretical background needed to detect 
sources:
• Pro: search for new signals.

• Con: when detecting CBCs, the PE on the source, i.e. 
the chirp mass estimation, is only given by a fit on the 
likelihood plot.

Let’s fix it!

[1]



Logo ente 
beneficiario

Introduction: PINNs

• Physics-Informed Neural Networks are a ML technique developed to 
exploit, discover or solve differential equations as physical laws 
behind the data [2, 3].

• The base of the physical information is the loss function: the physics 
is implented inside the loss itself in form of PDE and auxiliary physics 
relations.
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To infer the two BH masses m1 and m2 from a dataset 
of simulated burst CBCs signals.

Main goal for PINNGraPE

Dataset: 104 simulated signals. For every signal:
• 7 spectrogram-like images

• Stored values for target:
• {m1, m2, Mc, Mtot, η, {df/dt}k, Newt, {df/dt}k, 1.5PN_corr, fk},

• 1.5PN formalism [4]:
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Architecture
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Loss function

• Main terms: df/dt ones.
Newtonian one depends only on Mc, while the correction one depends on Mtot and η.

• Physical loss terms exploit physical redundancy between Mc, Mtot and η.
Physical redundancy explained in detail in Di Clemente et al. [5] and in a new paper in the writing 
stage.

• Notice: no direct output vs target term.
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Loss function



Logo ente 
beneficiario

Loss function
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Results Mc [M☉] Mtot [M☉] η
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Results m1 [M☉] m2 [M☉]
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Results
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Results
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Results – test with GW150914 like masses
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What about ET?

The same technique could be exploited in ET:
• it offers a PE technique for CBC detected with unmodeled pipelines;

• it is suitable for new kind of signals:
• if we know the physics behind the system, we can optimize for different parameters and 

add different loss terms;

• if we know the physics behind the system only partialy, PINNs are also able to 
approximate the unknown physics.
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Conclusions and future steps

• Main goal reached:
m1 and m2 are infered within an error < 5%.

• PINNs really represents a promising approach for acheaving fast PE 
for unmodeled singals.

• Next steps:
• Almost ready to implement on cWB.

• Study on the error estimate on a new incoming signal.

• Increase the parameters to estimate: add further PN terms.
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Thank you for your attention!
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Backup slides
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RNN version
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1.5PN formalism [4]
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Architecture
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PINNs theory
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PINNs theory
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