Echoes from the Black Hole Microstructure

Alexandru Dima Sapienza University of Rome INFN Roma1

Based on: -AD, M. Melis, P. Pani, *PRD 110 (2024) 8, 084067*, <u>arXiv:2406.19327</u> -AD, M. Melis, P. Pani, *PRD 111 (2025) 10, 104001*, <u>arXiv:2502.04444</u> -AD, F. Corelli, P. Pani, in preparation

Outline

- A case for the ET: classical BH vs mimickers
- The fuzzball paradigm: a toy model of microstate geometries
- Topological stars: QNMs, echoes and stability
- Conclusions & future prospects

The Kerr paradigm

- Novel observational probes:
 - LVK, ~100 BBH mergers
 - EHT, ~2 SMBH "shadow" images
- What are we observing?
- Classical Black Hole paradigm:
 - Relies on uniqueness and no-hair theorems
 - Extreme astrophysical compact objects can be interpreted as Kerr black holes (or Neutron Stars)
- Open challenges:
 - Large B-H entropy
 - Singularity
 - Information Paradox

Black Hole mimickers: a target for 3G detectors

- Black Hole mimickers: ultra compact, regular and horizonless objects
- Most are **bottom-up** models (boson stars, gravastars, wormholes)
- Possible signatures:
 - Non-trivial **Tidal deformability**
 - Anomalous spin-induced quadrupole moment
 - **Echoes** in the ringdown

Cardoso, Franzin, Pani (2016); Cardoso & Pani (2019)

Bambi et al. (2025)

• 2G detectors are limited: SNR ~O(100) required for echoes detection

Testa & Pani (2017); Maggio et al. (2019); Abbott et al. (2021)

• ET (and other 3G detectors) could make a difference!

Maggiore et al. (2020); Branchesi et al. (2023)

The fuzzball paradigm

- String Theory's **fuzzballs**: ensembles of **many**, **smooth** and **horizonless** microstates
- Microstate geometries: BH asymptotics, horizon-scale structure

Lunin & Mathur (2002); Mathur (2005, 2008); Meyerson (2020)

- supported via **higher dimensions** and **non-trivial topology** *Gibbons & Warner (2014)*
- Known microstates: **supersymmetric (or extremal)**, many charges, complex geometries
- Few brave phenomenological studies

Bianchi et al. (2018a, 2018b); Bena et al. (2018, 2019); Ikeda et al. (2021). Bena, Warner (2008, 2013); Bena et al., (2011); Bena, Shigemori, Warner (2014); Bianchi et al., (2017); ...

The 5D Einstein-Maxwell toy model

5D Einstein+Maxwell:

$$S_5 = \int d^5 x \sqrt{-\mathbf{g}} \left(\frac{1}{2\kappa_5^2} \mathbf{R} - \frac{1}{4} \mathbf{F}_{AB} \mathbf{F}^{AB} \right)$$

·+

$$ds^{2} = -f_{S}(r)dt^{2} + f_{B}(r)dy^{2} + \frac{1}{h(r)}dr^{2} + r^{2}d\Omega_{2}^{2} \qquad F = P\sin\theta \,d\theta \wedge d\phi$$
$$f_{B}(r) = 1 - \frac{r_{B}}{r}, \quad f_{S}(r) = 1 - \frac{r_{S}}{r}, \quad h(r) = f_{B}(r)f_{S}(r), \quad P = \pm\kappa_{5}^{-1}\sqrt{\frac{3}{2}r_{B}r_{S}}$$

• Magnetized Black String: $r_B < r_S$

• **Topological Star**:
$$r_B > r_S$$

$$i^{1}$$

Topological Stars

2.5

2.0

Gregory-Laflamme instability:

$$r_B < \frac{1}{2}r_S \,, \quad r_B > 2r_S$$

Top Star Phenomenology

- Test field probes: Heidemann, Speeney, Berti (2023); Bianchi et al. (2023)
- Geodesic motion: Bini, Di Russo (2025)
- EMRIs (test point scalar charge): Di Russo, Bianchi, Bini (2024a, 2024b); Melis, Brito, Pani (2025)
- Shadow Imaging: Heidemann, Bah, Berti (2022)
- Linear Perturbations: Dima, Melis, Pani (2024, 2025); Bena et al. (2024); Bianchi, Bini, Di Russo (2024); Cipriani et al. (2024)

Regge-Wheeler-Zerilli perturbation scheme (5D)

Type-I

axial gravitational + polar EM ($l \ge 1$)

$f_{AB}^{\text{even}} = \sum_{l,m} \begin{pmatrix} 0 & f_{ty}^{+}(t,r) & f_{tr}^{+}(t,r) & f_{t\theta}^{+}(t,r)\partial_{\theta} & f_{t\theta}^{+}(t,r)\partial_{\phi} \\ -f_{ty}^{+}(t,r) & 0 & f_{yr}^{+}(t,r) & f_{\theta}^{+}(t,r)\partial_{\theta} & f_{y\theta}^{+}(t,r)\partial_{\phi} \\ -f_{tr}^{+}(t,r) & -f_{yr}^{+}(t,r) & 0 & f_{r\theta}^{+}(t,r)\partial_{\theta} & f_{r\theta}^{+}(t,r)\partial_{\phi} \\ -f_{t\theta}^{+}(t,r)\partial_{\theta} & -f_{y\theta}^{+}(t,r)\partial_{\theta} & -f_{r\theta}^{+}(t,r)\partial_{\theta} & 0 & 0 \\ -f_{t\theta}^{+}(t,r)\partial_{\phi} & -f_{z}^{+}(t,r)\partial_{\phi} & -f_{z}^{+}(t,r)\partial_{\phi} & 0 & 0 \end{pmatrix} Y_{lm}(\theta,\phi)$

Type-II

polar gravitational + polar scalar + axial EM ($l \ge 0$)

E-domain: matrix-based ONM solver

Perturbed equations in canonical form:

Reduction to 4D,
$$\sigma = 0$$
 $\left[\frac{d^2}{dt^2} - \frac{d^2}{d\rho^2} + V_{eff}\right]\Psi(t,\rho) = 0$ T-domain: 1+1 pde solver

Linear response in t-domain

Near-extremal MBH:

- fixed mass (M=1)
- Config w/ 99.7% of extremal charge
- ringdown + tail

2nd kind Top Star:

- Config w/ 100.3% of extremal charge
- initial **BH-like ringdown**
- long-lived modes: echoes!

1st kind Top Star:

- fixed mass (M=1)
- less compact
- higher frequencies QNMs, BH-like timescale of damping

Type-I, l=2, metric perturbation

Linear response in t-domain

Near-extremal MBH:

- fixed mass (M=1)
- Config w/ 99.7% of extremal charge
- ringdown + tail

2nd kind Top Star:

- Config w/ 100.3% of extremal charge
- initial **BH-like ringdown**
- long-lived modes: echoes!

1st kind Top Star:

- fixed mass (M=1)
- less compact
- higher frequencies QNMs, BH-like timescale of damping

Type-II, l=2, metric perturbation

Summary & Follow-up

Topological Stars: a fun playground for investigating the type of horizon-scale effects the ET will be looking for!

- Simple and viable **UCOs**
- Toy models for "quantum gravity" objects (microstate geometries/fuzzballs)
- Linear response of Topological Stars:
 - **stability** under **linear** perturbations (verified numerically)
 - compact (2nd kind) Topological Stars can produce echoes!
- Next steps:
 - Response of rotating Top Stars
 - Nonlinear stability (1+1D)
 - 3+1D dynamics, binaries and mergers
 - Complex microstate geometries

Thank you!

Bonus slides

Black Hole mimickers: a target for 3G detectors

- Black Hole mimickers: ultra compact, regular and horizonless objects
- Most are **bottom-up** models (boson stars, gravastars, wormholes)
- Possible signatures:
 - Tidal deformability
 - \circ Anomalous spin-induced quadrupole moment
 - \circ Echoes in the ringdown

Cardoso, Franzin, Pani (2016); Cardoso & Pani (2019)

Bambi et al. (2025)

• 2G detectors are limited: SNR ~O(100) required for echoes detection

Testa & Pani (2017); Maggio et al. (2019); Abbott et al. (2021)

• ET (and other 3G detectors) could make a difference!

Maggiore et al. (2020); Branchesi et al. (2023)

Where do the echoes come from?

0.35 **Near-extremal MBH:** Effective potential barrier BH: $eQ_m/M = 1.1528$ 0.30 Potential vanishes asymptotically TS: $eQ_m/M = 1.1566$ 0.25 ر^e# (r) M² 0.10 ⁶ 2nd kind Top Star: Same BH asymptotics at large distances "Small" corrections at the potential peak Reflective "surface"! 0.10 Potential well leads to trapped modes! 0.05 0.00^L 1.0 1.5 2.0 3.0 3.5 2.5 4.0 r/M

Type-I QNMs: QNM Spectrum

Long-lived

BH-like

		Magnetized BH	TS, second kind	TS, first kind
n = 0	f-domain	$0.489568 - i7.972 \times 10^{-2}$	$0.183217 - i 4.674 \times 10^{-10}$	0.644348 - i 0.1551
	t-domain	$0.489600 - i7.978 \times 10^{-2}$	$0.183219 - i3.349 \times 10^{-10}$	0.643938 - i 0.1665
n = 1	f-domain	-	$0.254071 - i 6.001 \times 10^{-8}$	-
	t-domain	-	$0.254084 - i6.008 \times 10^{-8}$	-
n=2	f-domain	-	$0.323219 - i 2.615 \times 10^{-6}$	-
	t-domain	-	$0.323263 - i 2.622 \times 10^{-6}$	-
n = 3	f-domain	-	$0.390169 - i 6.116 \times 10^{-5}$	-
	t-domain	-	$0.390256 - i 6.142 \times 10^{-5}$	-
n = 4	f-domain	-	$0.453786 - i 8.348 \times 10^{-4}$	-
	t-domain	-	$0.453832 - i8.340 \times 10^{-4}$	-
n = 5	f-domain	-	$0.513765 - i 5.463 \times 10^{-3}$	-
	t-domain	-	$0.513375 - i2.754 \times 10^{-3}$	-
n = 6	f-domain	-	$0.574947 - i 1.658 \times 10^{-2}$	-
	t-domain	-	$0.572869 - i 1.140 \times 10^{-2}$	-

Type-II QNMs: QNM Spectrum

	r_S/r_E	3 =	7/10	9/10	19/20	99/100
= 1	p = 0	f-domain	$0.725735 - i9.739 \times 10^{-2}$	$0.594653 - i 3.979 \times 10^{-3}$	$0.463193 - i2.163 imes 10^{-5}$	$0.221521 - i1.967 \times 10^{-11}$
		t-domain	$0.725753 - i 9.735 imes 10^{-2}$	$0.594636 - i 3.978 imes 10^{-3}$	$0.463183 - i 2.160 imes 10^{-5}$	$0.221438 - i 2.110 imes 10^{-11}$
	p = 1	f-domain	-	$0.543775 - i4.233 \times 10^{-2}$	$0.581303 - i4.013 \times 10^{-3}$	$0.293106 - i 4.147 \times 10^{-9}$
		t-domain	-	$0.549296 - i3.719 \times 10^{-2}$	$0.581265 - i4.006\times10^{-3}$	$0.292507 - i 4.089 \times 10^{-9}$
	p=2	f-domain	-	$0.708010 - i6.095 \times 10^{-2}$	$0.441270 - i 3.926 \times 10^{-3}$	$0.220050 - i 1.896 \times 10^{-7}$
		t-domain	-	$0.709243 - i 5.997 \times 10^{-2}$	$0.441245 - i3.910 \times 10^{-3}$	$0.220049 - i 1.875 \times 10^{-7}$
	p = 3	f-domain	-	-	$0.681979 - i3.779 \times 10^{-2}$	$0.362912 - i 2.424 \times 10^{-7}$
		t-domain	-	-	$0.682161 - i 3.173 \times 10^{-2}$	$0.362168 - i 2.329 \times 10^{-7}$
_						
	r_S/r_E	3 =	7/10	9/10	19/20	99/100
	r_S/r_E	3 = f-domain	$\frac{7/10}{0.569028 - i4.955 \times 10^{-2}}$	$\frac{9/10}{0.834579 - i1.619 \times 10^{-4}}$	$\frac{19/20}{0.630961 - i 2.895 \times 10^{-8}}$	$\frac{99/100}{0.368629 - i 3.221 \times 10^{-14}}$
	r_S/r_B $p=0$	3 = f-domain t-domain	$\frac{7/10}{0.569028 - i4.955\times10^{-2}}\\ 0.569024 - i4.981\times10^{-2}$	$\frac{9/10}{0.834579 - i1.619\times10^{-4}}\\ 0.834486 - i1.865\times10^{-4}$	$\frac{19/20}{0.630961 - i 2.895 \times 10^{-8}} \\ 0.630844 - i 3.245 \times 10^{-8}$	$\begin{array}{c} 99/100\\ 0.368629-i3.221\times10^{-14}\\ 0.368733-i(*)\end{array}$
	$\frac{r_S/r_E}{p=0}$	g = f-domain t-domain f-domain	$\frac{7/10}{0.569028 - i 4.955 \times 10^{-2}}$ $0.569024 - i 4.981 \times 10^{-2}$ $1.085261 - i 7.599 \times 10^{-2}$	$\begin{array}{r} 9/10\\ \hline 0.834579-i1.619\times 10^{-4}\\ 0.834486-i1.865\times 10^{-4}\\ 0.422771-i6.856\times 10^{-4} \end{array}$	$\begin{array}{r} 19/20\\ \hline 0.630961-i2.895\times10^{-8}\\ 0.630844-i3.245\times10^{-8}\\ 0.317783-i5.510\times10^{-6} \end{array}$	$\begin{array}{r} 99/100\\ 0.368629-i3.221\times10^{-14}\\ 0.368733-i(*)\\ 0.295274-i3.206\times10^{-12} \end{array}$
	r_S/r_E p=0 p=1	g = f-domain t-domain f-domain t-domain	$\begin{array}{c} 7/10\\ 0.569028-i4.955\times10^{-2}\\ 0.569024-i4.981\times10^{-2}\\ 1.085261-i7.599\times10^{-2}\\ 1.085059-i7.557\times10^{-2} \end{array}$	$\begin{array}{r} 9/10\\ 0.834579-i1.619\times10^{-4}\\ 0.834486-i1.865\times10^{-4}\\ 0.422771-i6.856\times10^{-4}\\ 0.422131-i7.271\times10^{-4} \end{array}$	$\begin{array}{r} 19/20\\ \hline 0.630961-i2.895\times10^{-8}\\ 0.630844-i3.245\times10^{-8}\\ 0.317783-i5.510\times10^{-6}\\ 0.317827-i5.551\times10^{-6} \end{array}$	$\begin{array}{r} 99/100\\ 0.368629-i3.221\times10^{-14}\\ 0.368733-i(*)\\ 0.295274-i3.206\times10^{-12}\\ 0.295660-i(*)\end{array}$
= 2	$\frac{r_S/r_E}{p=0}$ $p=1$ $n=2$	f-domain t-domain f-domain t-domain f-domain	$\frac{7/10}{0.569028 - i4.955\times10^{-2}}\\ 0.569024 - i4.981\times10^{-2}\\ 1.085261 - i7.599\times10^{-2}\\ 1.085059 - i7.557\times10^{-2}\\ -$	$\begin{array}{r} 9/10\\ \hline 0.834579-i1.619\times10^{-4}\\ 0.834486-i1.865\times10^{-4}\\ 0.422771-i6.856\times10^{-4}\\ 0.424131-i7.271\times10^{-4}\\ 0.782183-i1.144\times10^{-2} \end{array}$	$\begin{array}{r} 19/20\\ \hline 0.630961-i2.895\times10^{-8}\\ 0.630844-i3.245\times10^{-8}\\ 0.317783-i5.510\times10^{-6}\\ 0.317827-i5.551\times10^{-6}\\ 0.764893-i2.534\times10^{-5} \end{array}$	$\begin{array}{r} 99/100\\ 0.368629-i3.221\times10^{-14}\\ 0.368733-i(*)\\ 0.295274-i3.206\times10^{-12}\\ 0.295660-i(*)\\ 0.439992-i3.944\times10^{-12} \end{array}$
= 2	r_S/r_E p=0 p=1 p=2	g = f-domain t-domain f-domain f-domain t-domain	$\frac{7/10}{0.569028 - i 4.955 \times 10^{-2}}$ $\frac{0.569024 - i 4.981 \times 10^{-2}}{1.085261 - i 7.599 \times 10^{-2}}$ $\frac{1.085059 - i 7.557 \times 10^{-2}}{-}$	$\begin{array}{r} 9/10\\ \hline 0.834579-i1.619\times10^{-4}\\ 0.834486-i1.865\times10^{-4}\\ 0.422771-i6.856\times10^{-4}\\ 0.424131-i7.271\times10^{-4}\\ 0.782183-i1.144\times10^{-2}\\ 0.782285-i1.146\times10^{-2} \end{array}$	$\begin{array}{r} 19/20\\ \hline 0.630961-i2.895\times10^{-8}\\ 0.630844-i3.245\times10^{-8}\\ 0.317783-i5.510\times10^{-6}\\ 0.317827-i5.551\times10^{-6}\\ 0.764893-i2.534\times10^{-5}\\ 0.765489-i3.821\times10^{-5} \end{array}$	$\begin{array}{r} 99/100\\ 0.368629-i3.221\times10^{-14}\\ 0.368733-i(*)\\ 0.295274-i3.206\times10^{-12}\\ 0.295660-i(*)\\ 0.439992-i3.944\times10^{-12}\\ 0.440391-i(*)\end{array}$
= 2	r_S/r_E $p = 0$ $p = 1$ $p = 2$ $p = 3$	3 = f-domain t-domain t-domain f-domain t-domain f-domain	$\frac{7/10}{0.569028 - i 4.955 \times 10^{-2}}$ $\frac{0.569024 - i 4.981 \times 10^{-2}}{1.085261 - i 7.599 \times 10^{-2}}$ $\frac{1.085059 - i 7.557 \times 10^{-2}}{-}$	$\begin{array}{r} 9/10\\ 0.834579-i1.619\times10^{-4}\\ 0.834486-i1.865\times10^{-4}\\ 0.422771-i6.856\times10^{-4}\\ 0.422131-i7.271\times10^{-4}\\ 0.782183-i1.144\times10^{-2}\\ 0.782285-i1.146\times10^{-2}\\ 0.960878-i1.792\times10^{-2} \end{array}$	$\begin{array}{r} 19/20\\ 0.630961-i2.895\times10^{-8}\\ 0.630844-i3.245\times10^{-8}\\ 0.317783-i5.510\times10^{-6}\\ 0.317827-i5.551\times10^{-6}\\ 0.764893-i2.534\times10^{-5}\\ 0.765489-i3.821\times10^{-5}\\ 0.616095-i4.239\times10^{-5} \end{array}$	$\begin{array}{r} 99/100\\ 0.368629-i3.221\times10^{-14}\\ 0.368733-i(*)\\ 0.295274-i3.206\times10^{-12}\\ 0.295660-i(*)\\ 0.439992-i3.944\times10^{-12}\\ 0.440391-i(*)\\ 0.148446-i6.337\times10^{-11} \end{array}$

TABLE II. Same as in Table $\boxed{1}$ but for TSs with $eQ_m/M \approx \{1.208, 1.174, 1.164, 1.157\}$ (equivalently, $r_S/r_B = \{0.70, 0.90, 0.95, 0.99\}$). The asterisk indicates QNMs with a characteristic damping time that is too large for the spectral analysis to retrieve an accurate fit thereof.

Type-II QNMs: MBH vs TS

