

SIMULATING INTERMEDIATE-MASS BLACK HOLES IN THE FIRST STAR CLUSTERS

BENEDETTA MESTICHELLI

XV ET SYMPOSIUM - 27/05/2025

IN COLLABORATION WITH: MANUEL ARCA SEDDA, MARICA BRANCHESI, MICHELA MAPELLI, STEFANO TORNIAMENTI, GIULIANO IORIO, GUGLIELMO COSTA, FILIPPO SANTOLIQUIDO, ALESSANDRO LUPI, MARTA VOLONTERI

WHAT IS AN INTERMEDIATE-MASS BLACK HOLE?

Stellar-mass BHs $m_{\rm BH} \sim 5 - 10^2 \, {\rm M}_{\odot}$

WHAT IS AN INTERMEDIATE-MASS BLACK HOLE?

Stellar-mass BHs $m_{\rm BH} \sim 5 - 10^2 \, {\rm M}_{\odot}$

Supermassive BHs $m_{\rm BH}\gtrsim 10^5\,{\rm M}_\odot$

WHAT IS AN INTERMEDIATE-MASS BLACK HOLE?

Stellar-mass BHs $m_{\rm BH} \sim 5 - 10^2 \,\mathrm{M_{\odot}}$ **Intermediate-mass BHs** $m_{\rm BH} \sim 10^2 - 10^5 \,{\rm M_{\odot}}$

Supermassive BHs $m_{\rm BH} \gtrsim 10^5 \, {\rm M}_{\odot}$

Metal-free

(Haiman et al. 1996; Yoshida et al. 2003)

Metal-free

(Haiman et al. 1996; Yoshida et al. 2003)

\blacktriangleright Massive ($>10^2\,{\rm M}_\odot$)

(Stacy & Bromm 2013; Hirano et al. 2015; Liu & Bromm 2020)

Metal-free

(Haiman et al. 1996; Yoshida et al. 2003)

Massive ($> 10^2 M_{\odot}$)

(Stacy & Bromm 2013; Hirano et al. 2015; Liu & Bromm 2020)

Form at high redshift $z \gtrsim 20$ (e.g. Hartwig et al. 2022)

Metal-free

(Haiman et al. 1996; Yoshida et al. 2003)

$\blacktriangleright \text{ Massive (} > 10^2 \,\mathrm{M_{\odot}}\text{)}$

(Stacy & Bromm 2013; Hirano et al. 2015; Liu & Bromm 2020)

Form at high redshift $z \gtrsim 20$ (e.g. Hartwig et al. 2022)

PERFECT SOURCES OF SIGNALS FOR THIRD GENERATION INTERFEROMETERS

Kalogera et al. 2021; Branchesi et al. 2023

UNCERTAINTIES ON IMF AND SFR

Costa et al. 2023

Santoliquido et al. 2023

UNCERTAINTIES ON IMF AND SFR

Costa et al. 2023

Santoliquido et al. 2023

POP III BINARY BLACK HOLE MERGERS ABOVE THE GAP

- **BBHs with IMBH primary form** (Tanikawa et al. 2020-2024; Costa et al. 2023; Santoliquido et al. 2023)
- Almost no mergers above the pair instability mass gap

Costa et al. 2023; Mestichelli et al. 2024

POP III BINARY BLACK HOLE MERGERS ABOVE THE GAP

- **BBHs with IMBH primary form** (Tanikawa et al. 2020-2024; Costa et al. 2023; Santoliquido et al. 2023)
- Almost no mergers above the pair instability mass gap

Costa et al. 2023; Mestichelli et al. 2024

WHAT IF THE FIRST STARS WERE BORN IN CLUSTERS?

Formation of very massive stars via repeated stellar collisions

Dynamics pairs up massive BHs

Hierarchical mergers

- Boost of pair-up, hardening and merger of BBHs above gap

 - Three-body interactions contribute to hardening

Mini-DM halo $\sim 10^7 \,\mathrm{M}_\odot$

Sakurai et al. 2017; Wang et al. 2022; Mestichelli et al. 2024; Reinoso et al. 2025

$\frac{\text{MASSIVE CLUSTERS}}{\sim 10^4 - 10^5 \, \mathrm{M}_{\odot}}$

Mapelli et al. 2021, 2022; Torniamenti et al. 2024 Semi-analytic

- $z = 20 \rightarrow 10$
- Cluster evolution
- No stellar evolution

$\frac{\text{MASSIVE CLUSTERS}}{\sim 10^4 - 10^5 \, \mathrm{M}_{\odot}}$

Mapelli et al. 2021, 2022; Torniamenti et al. 2024

- Semi-analytic
- $z = 20 \rightarrow 10$
- Cluster evolution
- No stellar evolution

 $m_{\rm min} = 2 \,\mathrm{M}_{\odot}$ $m_{\rm max} = 600 \,\mathrm{M}_{\odot}$

log-flat IMF

THE BOOST ABOVE THE PAIR INSTABILITY MASS GAP

Mestichelli et al. 2024

Mestichelli et al. 2024

THE BOOST ABOVE THE PAIR INSTABILITY MASS GAP

Mestichelli et al. 2024

Mestichelli et al. 2024

Mini-DM halo $\sim 10^7 \,\mathrm{M}_\odot$

Sakurai et al. 2017; Wang et al. 2022; Mestichelli et al. 2024; Reinoso et al. 2025

LOW-MASS CLUSTERS $\sim 10^3\,{\rm M}_{\odot}$

Wang et al. 2020; Tanikawa et al. 2020

- N-body code
- $z = 20 \rightarrow 10$
- Stellar evolution (bseEmp)
- External potential (galpy)

PRIMIN

bseEmp

Wang et al. 2020; Tanikawa et al. 2020

- N-body code
- $z = 20 \rightarrow 10$
- Stellar evolution (bseEmp)
- External potential (galpy)

Mestichelli et al., in prep.

mp) oy)

MERGER EFFICIENCIES: A COMPARISON

Mestichelli et al., in prep.

<u>ORBINNARY</u>

21

MERGER EFFICIENCIES: A COMPARISON

Mestichelli et al., in prep.

Mestichelli et al. 2024

CONCLUSIONS

> Pop. III stars are candidate progenitors of intermediate-mass black holes

- Simulations in field: binaries with intermediate-mass black hole primaries form efficiently but don't merge
- **Stellar dynamics** in the first star clusters can **enhance mergers** above upper-mass gap
 - Massive clusters (fastcluster): up to 100% of mergers with intermediate-mass black hole primary
 - Low-mass clusters (PeTar+bseEmp): only original BBH mergers
 - Same order of magnitude of merger efficiency

benedetta.mestichelli@gssi.it

BACK-UP SLIDES

MASSIVE CLUSTERS: MERGER RATE DENSITY

Santoliquido et al. 2020, 2021

- MRD of dynamical BBHs two orders higher than original/isolated MRD
- MRD higher in HM clusters
- MRD of CHE BBHs higher

Mestichelli et al. 2024

THE BOOST ABOVE THE PAIR INSTABILITY MASS GAP

Mestichelli et al. 2024

2024

MASSIVE CLUSTERS: CHEMICAL HOMOGENEOUS STARS

Mestichelli et al. 2024

MASSIVE CLUSTERS: DEPENDENCE ON INITIAL CONDITIONS

1 = SANA ET AL. 2012

5 = STACY & BROMM 2013

Mestichelli et al. 2024

DYNAMICAL BBHs: MASS SAMPLING FUNCTIONS

Mestichelli et al. 2024

 $\mathcal{R} = \int_{z_{\text{max}}}^{z} \psi(z') \frac{dt(z')}{dz'} \left[\int_{Z_{\text{min}}}^{Z_{\text{max}}} \eta(Z) \mathcal{F}(z', z, Z) \, dZ \right] dz'$ FR density wig et al. 2022) Merger efficiency

(different for orig and dyn)

2021

USTER- ORBITAL F

Dynamical hardening (Heggie 1975)

GW emission (Peters 1964) $\frac{\mathrm{d}a}{\mathrm{d}t} = -2\pi\xi \frac{G\rho_{\mathrm{c}}}{\sigma}a^{2} - \frac{64}{5}\frac{G^{3}m_{1}m_{2}(m_{1}+m_{2})}{c^{5}a^{3}(1-e^{2})^{7/2}}f_{1}(e)$ $\frac{\mathrm{d}e}{\mathrm{d}t} = 2\pi\xi\kappa\frac{G\rho_{\rm c}}{\sigma}a - \frac{304}{15}e\frac{G^3m_1m_2(m_1+m_2)}{c^5a^4(1-e^2)^{5/2}}f_2(e)$

STELLAR TRACKS

bseEMP; Tanikawa et al. 2020-2024

SEVN; Costa et al. 2023

INITIAL POSITIONS

33

PRELIMINAR

BBH MASS SPECTRUM IN SMALL CLUSTERS

INTERMEDIATE-MASS BLACK HOLES IN SMALL CLUSTERS

35

ON **ER** CLI F

WHAT'S NEXT: CLUSTER MERGERS

- Up to 7 clusters distributed according to Plummer density profile in free fall
- Which configuration leads to higher merger efficiency?
- Which configuration leads to IMBH mergers?

