Fast and accurate parameter estimation of high-redshift sources with the Einstein Telescope

Filippo Santoliquido

Jacopo Tissino, Ulyana Dupletsa, Jan Harms, Marica Branchesi, Manuel Arca Sedda, Maximilian Dax, Annalena Kofler, Stephen R. Green, Nihar Gupte, Isobel M. Romero-Shaw, Emanuele Berti

arXiv: 2504.21087

28 May 2025

Parameter estimation

Ref. Thrane et al. 2019, Christensen et al. 2022

Parameter estimation

 θ through stochastic sampling (e.g. nested sampling). This requires tens of millions of likelihood evaluations ...

Ref. Thrane et al. 2019, Speagle et al. 2019, Williams et al. 2021, Romero-Shaw et al. 2020, Wong et al. 2023, Papalini et al. 2025

Sampling parameters from the prior $\theta \sim \pi(\theta)$ and data from the likelihood $d \sim \mathscr{L}(d \,|\, \theta)$ is fast

Using (θ, d) to construct with **deep learning** an estimator $q(\theta | d)$ of $p(\theta | d)$

Ref. Lueckmann et al. 2017, Greenberg et al. 2019, Cranmer et al. 2020, Chua et al. 2020, Dax et al. 2023

Likelihood-free inference

Normalising flows

change of variables $f_d: u \to \theta$

Rapidly evaluated and sampled from

Ref. Kobyzev et al. 2019, Durkan et al. 2019, Polanska et al. 2024

Many advantages: they represent a complicated distribution q using a series of

<u>Dingo</u> implements neural posterior estimation. Training in days, inference in minutes

Ref. <u>Green et al. 2020, Green et al. 2021, Dax et al. 2021, Dax et al. 2022, Wildberger et al. 2022, Dax et al. 2024</u>

I trained Dingo using the HFLF-cryo ASD with ET- Δ configuration placed in Sardinia

Einstein Telescope

high-redshift sources

- 'chirp_mass': UniformInComponentsChirpMass(minimum=40, maximum=1100)
- 'luminosity_distance': UniformSourceFrame(minimum=5_000.0, maximum=500_000.0)
- with $f \in [6, 256]$ Hz, df = 1/8 Hz, waveform approximant = IMRPhenomXPHM

Importance sampling

We can correct inaccuracies

Ref. <u>Todkar et al. 2010</u>, <u>Owen 2013</u>

Target (likelihood x prior)

Dingo proposal

Ref. <u>Romero-Shaw et al. 2020</u>

Ref. Dupletsa et al. 2025

Ref. Santoliquido et al. 2025

Sky localisation

$d_{\rm L}^{\rm inj}$ [Mpc]

Contributions

Fast and accurate parameter estimation for high-redshift sources Look at multimodalities in sky localisation

- This approach thrives where Fisher matrix approximation is less reliable

arXiv: 2504.21087

Backup slides

Other priors

'mass_ratio': UniformInComponentsMassRatio(minimum=0.125, maximum=1.0)

- 'dec': Cosine(minimum= $-\pi/2$, maximum= $\pi/2$)
- 'ra': Uniform(minimum=0, maximum= 2π)
- 'theta_jn': Sine(minimum=0.0, maximum= π)
- 'psi': Uniform(minimum=0, maximum= π)
- 'chi_1': AlignedSpin(a_prior=Uniform(minimum=0, maximum=0.9))
- 'chi_2': AlignedSpin(a_prior=Uniform(minimum=0, maximum=0.9))
- 'phase': Uniform(minimum=0, maximum= 2π)

The loss function

Kullback-Leibler divergence

$$D_{\text{KL}}[p(\theta, s) \mid \mid q(\theta, s)] = \int ds \ p(s) \left[\int d\theta \ p(\theta \mid s) \log \frac{p(\theta \mid s)}{q(\theta \mid s)} \right]$$
Bayes' theorem

$$= \int ds \ p(s) \left[\int d\theta \ \frac{p(s \mid \theta)p(\theta)}{p(s)} \log \frac{p(\theta \mid s)}{q(\theta \mid s)} \right]$$
This term is not affected by the neural network

$$= \int ds \ p(s) \left[\int d\theta \ \frac{1}{p(s)} \left[p(\theta)p(s \mid \theta) \log p(\theta \mid s) - p(\theta)p(s \mid \theta) \right] \right]$$

Neglecting constant values

$$\propto -\int ds \ d\theta \ p(\theta)p(s \,|\, \theta)\log q(\theta \,|\, s) =$$

Ref. <u>Dax et al. 2022</u>, <u>Dax et al. 2023</u>

 θ)log $q(\theta \mid s)$]

$$\frac{1}{N_S} \sum_{i=1}^{N_S} \log q(\theta_i, s_i) = \mathbb{E}_{p(\theta)} \mathbb{E}_{p(s|\theta)} [-\log q(\theta | d)]$$

Importance sampling

Training

Antenna amplitude pattern functions

$$F_{+}^{i}(\beta,\lambda,\psi) = -\frac{\sqrt{3}}{4} [(1+\cos^{2}\beta)s]$$
$$F_{\times}^{i}(\beta,\lambda,\psi) = +\frac{\sqrt{3}}{4} [(1+\cos^{2}\beta)s]$$

Ref. Regimbau et al. 2012, Vishal et al. 2020, Sylvain et al. 2021

$\sin 2\lambda \cos 2\psi + 2\cos\beta \cos 2\lambda \sin 2\psi],$

$\sin 2\lambda \sin 2\psi - 2\cos\beta \cos 2\lambda \cos 2\psi],$

Antenna power pattern function

 $\sqrt{(F_{+}^{i})^{2} + (F_{\times}^{i})^{2}} = \sqrt{\frac{3}{12}} \left[(1 + \cos^{2}\beta)^{2} \sin^{2} 2\lambda + \cos^{2} \beta \cos^{2} 2\lambda \right]$

Ref. Regimbau et al. 2012, Vishal et al. 2020, Sylvain et al. 2021

Masses

Astrophysical population

Binary black holes formed from Population III stars

Ref. <u>Costa et al. 2023</u>, <u>Santoliquido et al. 2023</u>, <u>Santoliquido et al. 2024</u>, <u>Santoliquido et al. 2025</u>

Precessing spins

Validating results

1000 random injections sampled from the priors

Importance sampling

We can correct inaccuracies

Ref. <u>Todkar et al. 2010</u>, <u>Owen 2013</u>

Wide redshift range accuracy

85% of sources with sample efficiency > 1%

Sky modes in LISA

β_L, λ_L

injected sky location

Sky mode	Full	Frozen	Low-f	Frozen low-f
reflected:	t-dep.	degen.	t-dep.	degen.
$ -eta_L,\lambda_L $				
antipodal:	f -dep.+ $\Delta \Phi_R$	f-dep.	$\Delta \Phi_R$	degen.
$\left -eta_{L},\lambda_{L}+\pi ight $				
$\beta_L, \lambda_L + \pi/2$	t- f -dep.	f-dep.	t-dep.	degen.
$eta_L,\lambda_L+\pi$	t- f -dep.	f-dep.	t-dep.	degen.
$\beta_L, \lambda_L - \pi/2$	t- f -dep.	f-dep.	t-dep.	degen.
$\left[-eta_L,\lambda_L+\pi/2\right]$	t- f -dep.	f-dep.	t-dep.	degen.
$\left -eta_L,\lambda_L-\pi/2\right $	<i>t-f-</i> dep.	f-dep.	t-dep.	degen.

Ref. Vishal et al. 2020, Sylvain et al. 2021, Singh and Bulik 2021, Singh and Bulik 2022

Energy cost

- Hardware: GPU NVIDIA A100 80GB, CPU AMD EPYC 7513 32-core
- Dingo-IS:
 - Training: 970 kWh {1 GPU + 32 CPUs running for 6 days}
 - {8 CPUs, 1.7 minutes per source on average} Inference: 45 kWh
 - Total: **1015 kWh**
- Bilby:
 - Inference: **4000 kWh** {4 CPUs, ~5 hours per source on average}

Ref. Wouters et al. 2024, Hu et al. 2024

0.0 0.2 0.4

Ref. Santoliquido et al. 2025

 β [deg]

ipodal	٠	4th	٠	6th
	٠	5th	٠	7th

0.6	0.8	1.0
$\overline{F_+^2 + F_\times^2}$		

Antenna power pattern function

