
Gareth Davies, Steve Fairhurst, Ian Harry, Qian Hu, Duncan Macleod, Geraint Pratten, Vivien Raymond,
Patricia Schmidt, John Veitch, Christopher Whittall.

The UK effort for 3G computing

Digital infrastructure

Develop new computational algorithms and infrastructure designed to process the hundreds of
thousands to millions of black holes and neutron star mergers each year observed by the next-
generation GW observatories.

• Computational infrastructure and algorithms

• Waveform generation, led by the University of Birmingham

• Real time searches, led by the University of Portsmouth

• Signal and population inference, led by the University of Glasgow

• Prototype event database, led by Cardiff University

•

Waveform acceleration (C. Whittall & G. Pratten)

● Proof of concept: SEOBNRv5PHM with
arbitrary precessing spins, mass ratio 1
<= q <= 2 and 5000M signal duration:

○ Neural networks interpolate across the
7d parameter space accurately and
efficiently.

○ Suitable for GPU acceleration and
waveform batching.

● Now investigating how these techniques
scale up to longer durations and higher
mass ratios, critical for next-gen
detectors.

Developed semi-automated pipeline to train reduced-order-models with artificial
neural networks for parameter space fitting. Agnostic to base waveform model.

Mismatches in the surrogate compared to the
base EOB model.

How will searches deal with 3G GW detector data?

Will template bank searches even be applicable?:

• How big would a template bank be? Does this
make this kind of search infeasible?

• Template banks will be dominated by small
changes at low frequency, how can we
remove this?

• Will Earth rotation be a problem for bank
sizes?

• What kind of disk space will we need to store
triggers?

• What sample rate do we use for the SNR series?

Additional questions:

Where can optimised approximants be used?

Do we need multi-banded approaches?
Hierarchical searches? Machine learning?

Are overlapping signals an issue?

Does it even matter that waveform
approximants are not 100% accurate at this
SNR?

Will we need to include exotic physics in order
to not miss signals?

Cost of Bayesian Parameter
Estimation
• Bayesian sampling time cost scales

with signal duration(T) and SNR.

• CPU days (D) for PE can be fitted as
logD = a logT + b logSNR +c

• Figure: Total CPU hours required to
analyze ET-MDC-1 catalog (one-
month observation)

• Current “standard” method used by
LVK method is unfeasible

• Acceleration methods like ROQ:
O(1-10) million CPU hours per month
per round of analysis

BBH BNS NSBH

Q. Hu & J. Veitch, 2412.02651

Machine Learning Solution
to Tough Problems
• Hours-long BNS Signals solved by ML

within 1s

• 0.1% computational cost of traditional
sampling methods (including training cost)

• Crucial for catalog-level analysis in the
future

Q. Hu et al, 2412.03454

Machine Learning Solution
to Tough Problems
• A general solution to overlapping signal

inference problem: hierarchical subtractions
using ML PE models

• Only need to train ML PE models for single
signals!

• Can adapt to different source types, time
difference, and number of sources

Q. Hu & J. Veitch, in prep, 2025

Machine Learning Solution
to Tough Problems
• A general solution to overlapping signal

inference problem: hierarchical subtractions
using ML PE models

• Only need to train ML PE models for single
signals!

• Can adapt to different source types, time
difference, and number of sources

Q. Hu & J. Veitch, in prep, 2025

Machine Learning Solution
to Tough Problems
• A general solution to overlapping signal

inference problem: hierarchical subtractions
using ML PE models

• Only need to train ML PE models for single
signals!

• Can adapt to different source types, time
difference, and number of sources

Q. Hu & J. Veitch, in prep, 2025

Machine Learning Solution
to Tough Problems
• A general solution to overlapping signal

inference problem: hierarchical subtractions
using ML PE models

• Only need to train ML PE models for single
signals!

• Can adapt to different source types, time
difference, and number of sources

Q. Hu & J. Veitch, in prep, 2025

Machine Learning Solution
to Tough Problems
• A general solution to overlapping signal

inference problem: hierarchical subtractions
using ML PE models

• Only need to train ML PE models for single
signals!

• Can adapt to different source types, time
difference, and number of sources

Q. Hu & J. Veitch, in prep, 2025

Next-Gen event database
• 3G event rate 1000x higher than 2G

• High-SNR negative-latency detection allows early
warning alerts

• Challenge to provide a robust, scalable, event
database and alerting infrastructure to serve the GW
observatory network and EM partners

• Cardiff leading UK effort to scope requirements and
conceptual design

• Requirements link

• Needs detailed understanding of access patterns

• Introductory study of prospective database
technologies and data placement algorithms

• Link

NGDB Software Requirements Specification

Development version 6dbb5bac

2024-12-13

Contents

1 Preface 2

2 Overview 2

2.1 Scope . 2
2.2 Abbreviations . 2
2.3 Requirements elicitation . 2

2.3.1 Interview Guides . 2
2.4 Stakeholders . 3

2.4.1 Customers . 3
2.4.2 End users . 3
2.4.3 Developers and operators . 3

2.5 Product overview . 4
2.5.1 Context . 4
2.5.2 Functions . 4

2.6 Project management . 4
2.7 References . 4

3 Requirements 5

3.1 Constraints . 5
3.1.1 Data availability and retention . 5
3.1.2 Security . 5

3.2 Interface requirements . 5
3.3 Non functional requirements . 6

3.3.1 Operability requirements . 6
3.3.2 Project management requirements . 6
3.3.3 Development requirements . 6

3.4 Observability . 7
3.5 Performance requirements . 7

3.5.1 Design constraints on performance . 7
3.5.2 Low-latency requirements . 8
3.5.3 Core performance measures . 8
3.5.4 Ad-hoc scientific queries . 9
3.5.5 Notes . 9

3.6 User functionality requirements . 9
3.6.1 Core functionality . 9
3.6.2 API functionality . 10
3.6.3 Pipeline developer functionality . 10
3.6.4 Graphical web interface functionality . 11
3.6.5 Documentation . 11

1

https://gitlab.com/nggw/wp6/ngdb/-/jobs/8633177698/artifacts/file/public/SRS-dev.pdf
https://gitlab.com/nggw/wp6/ngdb-simulation/-/jobs/artifacts/main/file/docs/prospective-analysis.pdf?job=build_pdf

Table 1. Summary of relevant scalable databases or storage technologies

Database Type Use case Open Source?

Apache Cassan-

dra

NoSQL High volume & throughput, column oriented,
query-first, no joins (client-side implementa-
tion), no ad hoc queries

Yes

MongoDB NoSQL High volume & throughput, document-
oriented, customisable sharding, vector search

Yes

CockroachDB NewSQL Distributed transactions, PostgreSQL com-
patibility, obscures partitioning

No

Google Spanner NewSQL PostgresSQL interface, strong consistency No
ScyllaDB NoSQL Claimed improved performance over Cassan-

dra, hybrid OLAP and OLTP
Yes

TiDB NewSQL Row-oriented, full SQL compatibility, hybrid
transactional/analytical (HTAP)

Yes

Vitess NewSQL Cloud-native, similar to TiDB, SQL interface,
vector search, weak transactions

Yes

Apache Druid SQL OLAP, event data Yes

of data gathering. For large datasets that exceed typical single node capacity, scalable systems will be35

required in some form regardless. Scalable storage is a core o!ering of modern commercial o!erings.36

Scaling can be achieved vertically, where individual node specs are improved, or horizontally, where37

more nodes are added. Horizontal scaling can not only provide greater throughput, but also resilience,38

since partial failures of a subset of nodes can be less damaging than that of a single point of failure39

[33]. For a single-node database system, vertical scaling is important but limited. Horizontal scaling is40

commonly achieved for relational databases by data partitioning, also known as sharding or fragmentation41

[4, 5]. For such a system, a database is split, and data subsets stored on di!erent nodes (logical or42

physical). Partitioning in turn can either be vertical (column-based) or horizontal (row-based) [33]. In43

the most simple case, with single-row write and read operations, horizontal scaling is simple. However,44

when single objects are stored across nodes, referred to as declustering, requests must be made across45

shards, which can have performance consequences. This applies to both distributed transactions, as well46

as cross-shard joins and OLAP workloads. For gravitational wave superevents, individual events may be47

declustered, or colocated on a single shard. Workarounds to this problem vary: in Apache Cassandra48

[52] or Snowflake [53], data are denormalized with ‘materialized views’, which essentially resolves the49

problem by duplicating data and partitioning it in di!erent ways.50

A second complication manifests as ‘hotspots’, or skewed workloads. For candidate gravitational wave51

events, rare events may be scientifically interesting, while common events with low signal-to-noise ratio52

may be uninteresting and accessed infrequently; in a naively partitioned system, load may not be evenly53

distributed across nodes. As a result, horizontal scaling is challenging [12], and determining the optimal54

placement of data in the presence of skew and clustering is di”cult [7, 8, 9, 10, 13]. Replication is55

often a requirement of database systems, and secondary nodes can be used for live failover. AWS o!ers56

out-of-the-box read-replica functionality [45].57

For a given database system, scaling approaches depend on workload types. Typically, OLTP and58

OLAP systems make use of separate approaches for horizontal scaling. In some cases, NoSQL databases59

are preferred for horizontal scalability, but often for ‘soft’ data without ACID guarantees [4].60

Table 1 gives a range of existing distributed storage solutions. Each has levels of customisability,61

specific use cases, performance characteristics, and limitations. It is also possible to develop custom62

routing application layers, including logic for required sharding, resharding, replication, transactions,63

and joins. Manual sharding may only be preferable where custom functionality, not available in existing64

solutions, is desired.65

1.2.1. Data warehouses, lakes, and lakehouses. Several architectural models were developed in business66

intelligence [54, 62] for centralised analytics systems that aggregate diverse data sources throughout an67

organisation, allowing a unified view. Three such models are data lakes, data warehouses, and data68

lakehouses. These are not storage systems or databases, but instead systems that make use of diverse69

datasets and are often backed by object storage [55, 56]. In more concrete terms, data warehouses perform70

’ETL’ operations: i) data source extraction or ingestion, ii) data transformation into structured schema,71

2

Next-Gen event database
• 3G event rate 1000x higher than 2G

• High-SNR negative-latency detection allows early
warning alerts

• Challenge to provide a robust, scalable, event
database and alerting infrastructure to serve the GW
observatory network and EM partners

• Cardiff leading UK effort to scope requirements and
conceptual design

• Requirements link

• Needs detailed understanding of access patterns

• Introductory study of prospective database
technologies and data placement algorithms

• Link

A. Southgate, D. Macleod, et al., in prep, 2025

Figure 1. Timeline of event detection and early warning, reproduced from, copyright
LVK https://emfollow.docs.ligo.org/userguide/analysis/index.html

Figure 2. Logical decomposition of NGDB system into components by use case. In
terms of concrete realisation, the system could be decomposed into streaming, OLTP
operational databases, and OLAP systems for bulk analyses.

A graph model of data distribution can be formulated, as in [41], which can be useful for abstracting127

away system implementation details and interrogating underlying data distribution. In PyShardSim,128

these graphs are extracted by interrogating requests and responses to and from database nodes. In this129

paper, we do not consider optimisation of data placement, but do make use of some statistics describing130

data placement.131

Let D = (d1, . . . dn) be data tuples, and Q = (q1, . . . , qm) queries. Since any given q uses or modifies132

some data in D, a bipartite graph can be defined, G(Q,D), with edges (q, d). A partition of D is a133

set of disjoint subsets of D, denoted ω(D) = {S1, . . . Sp} such that
⋃
ω(D) = D. A second bipartite134

graph G(Q,ω(D)) can be defined between Q and ω(D), with q(S) the set of data used by q; if q does not135

touch data in S, then q(S) = →. See Figure 4 for an example. Statistics can be defined by PyShardSim136

users capturing data distribution e!ciency. For example, if Eq is the collection of edges between query137

q and shards in ω(D), then the average number of shards queried by a set of queries could be one useful138

statistic:139

1

|Q|
∑

q→Q

|Eq|

4

https://gitlab.com/nggw/wp6/ngdb/-/jobs/8633177698/artifacts/file/public/SRS-dev.pdf
https://gitlab.com/nggw/wp6/ngdb-simulation/-/jobs/artifacts/main/file/docs/prospective-analysis.pdf?job=build_pdf

