ML in LL workflows

John Veitch and Steven Schramm
21 May 2025

Low-latency computing requirements

In late February, had to provide LL computing requirement estimates for ET-PP D8.1
o Of course the situation is going to change considerably between now and the start of ET
o However, we need to provide rough estimates of how to extrapolate
e Current (O4) LVK LL computing is > 1/20th of a future HL-LHC trigger farm
o Naive scaling by signal multiplicity (10% increase) unfeasible, thus must rely on speedups
o ML for fast parameter estimation has shown promise, with studies in the blue book quoting up to 10° speedups
o However, requirement is sum of parts, not only CBC parameter estimation
o Therefore assume 100x speedup, thus estimate is half of a future HL-LHC trigger farm
e This is for post-merger detection, thus neglects pre-merger regime
o Assume pre-merger uses a similar amount of resources

e Total LL computing estimate is therefore at the level of a future HL-LHC trigger farm
o Asignificant amount of resources, but does not have to be located at a single site - can be distributed (like now)

ML workflows: the basics

e Trade in-advance training time for significant execution (inference) speedup
o May spend days of time training; a huge up-front cost
o However, can take seconds or less for inference; huge speed-up compared to traditional approaches
o Not useful if inference is rare, but can be extremely powerful when inference is repeated many times

e Full ML workflows are possible, but could also be used to narrow the range for matched filtering/etc
o ML models are likelihood approximants, so can be a strong seed for further processing
o ML models are a trade-off between performance and execution time/comp. requirements
o Mixed approaches may be necessary for full performance and resiliency

e Hardware significantly impacts the efficiency of ML

o Training will (for the foreseeable future) be run on GPUs or dedicated hardware (Al engines, etc)

o Cannot really escape this, as rely on huge matrix operations to “learn” from data

o In contrast, inference can be run on different hardware - still usually GPUs, but can be exported to CPU etc

o Not a real change to the computing model, but does have the potential to impact computing requirements

o

o

@)

o

o

o

o

o

@)

o

o

o

ML workflows: the implications

ML hardware dependence does impose some assumptions in comparisons

Current LVK is predominantly CPUs with some GPUs (likely for ML)

Hardware may thus become more heterogeneous, as each pipeline may have different requirements
If heterogeneous hardware needs to be supported, could impact the computing model requirements
In particular if large ML models are used, specific hardware is likely needed

e ML models are primarily designed to interpolate, not extrapolate

Changing detector conditions etc may necessitate rapid re-training
Breaks the idea of ML training done once in advance, rather can be an evolving process
Most likely implication is on detector calibration: may need to re-train on a regular basis

e MlLis evolving at a rapid pace, and we cannot predict where it will be by the time ET begins

We have come an enormous way in the past few years, never mind the past decade
Designing a computing model must take this rapid rate of change into account
Already have a “technology tracking” group in the EIB, maybe we need an “architecture tracking” group too?

e MLis not a simple algorithm to get started with, and remains a very empirical approach

It will be important to envision proper training for students for them to be able to properly contribute
Lots of this will be at universities, but train-the-teachers or central advanced programs will be helpful (HSF-like)

ML and data quality

e ML can be used to identify good data, but also to identify bad data

o Can be trained for specific issues (such as classification of glitch modes)

o Can also be used for unknown issues (anomaly detection)

o Need to be careful in the latter case to not remove real signals

o In the era of ET 50-year infrastructure lifetime, ML could really help reduce shift load via first-pass automated DQ
e ML may be the key to understanding all of the auxiliary channels

o Leverage the full power of the data streams being collected

o Could better help to understand when we have glitches, what is causing them, etc
e Don’t see a direct impact on the low-latency computing model

o Training would likely be offline, and then refined (transfer learning, etc) online

o Would likely be an (online) input to low-latency, not part of low-latency

Publishing ML results

e ML models are limited in their interpretability
o Not easy to condense the ML output into a simple equation that can be put in a paper
o Others trying to reproduce your results will struggle - even the same architecture will differ with each training
o May need to publish full ML models for the community to be able to interpret results

e As mentioned, the online and low-latency system is likely to be evolving
o Do alerts have to include the ML likelihoods or calibrations/DQ/etc to go with them?
o Do we need to store the ML models used for an alert so we can internally cross-check alerts after the fact?
o More generally, does ML usage change desired alert contents?

