
ML in LL workflows

John Veitch and Steven Schramm
21 May 2025



Low-latency computing requirements

● In late February, had to provide LL computing requirement estimates for ET-PP D8.1
○ Of course the situation is going to change considerably between now and the start of ET

○ However, we need to provide rough estimates of how to extrapolate

● Current (O4) LVK LL computing is > 1/20th of a future HL-LHC trigger farm
○ Naive scaling by signal multiplicity (103 increase) unfeasible, thus must rely on speedups

○ ML for fast parameter estimation has shown promise, with studies in the blue book quoting up to 105 speedups

○ However, requirement is sum of parts, not only CBC parameter estimation

○ Therefore assume 100x speedup, thus estimate is half of a future HL-LHC trigger farm

● This is for post-merger detection, thus neglects pre-merger regime
○ Assume pre-merger uses a similar amount of resources

● Total LL computing estimate is therefore at the level of a future HL-LHC trigger farm
○ A significant amount of resources, but does not have to be located at a single site - can be distributed (like now)

2



ML workflows: the basics

● Trade in-advance training time for significant execution (inference) speedup
○ May spend days of time training; a huge up-front cost

○ However, can take seconds or less for inference; huge speed-up compared to traditional approaches

○ Not useful if inference is rare, but can be extremely powerful when inference is repeated many times

● Full ML workflows are possible, but could also be used to narrow the range for matched filtering/etc
○ ML models are likelihood approximants, so can be a strong seed for further processing

○ ML models are a trade-off between performance and execution time/comp. requirements

○ Mixed approaches may be necessary for full performance and resiliency

● Hardware significantly impacts the efficiency of ML
○ Training will (for the foreseeable future) be run on GPUs or dedicated hardware (AI engines, etc)

○ Cannot really escape this, as rely on huge matrix operations to “learn” from data

○ In contrast, inference can be run on different hardware - still usually GPUs, but can be exported to CPU etc

○ Not a real change to the computing model, but does have the potential to impact computing requirements

3



ML workflows: the implications

● ML hardware dependence does impose some assumptions in comparisons
○ Current LVK is predominantly CPUs with some GPUs (likely for ML)

○ Hardware may thus become more heterogeneous, as each pipeline may have different requirements

○ If heterogeneous hardware needs to be supported, could impact the computing model requirements

○ In particular if large ML models are used, specific hardware is likely needed

● ML models are primarily designed to interpolate, not extrapolate
○ Changing detector conditions etc may necessitate rapid re-training

○ Breaks the idea of ML training done once in advance, rather can be an evolving process

○ Most likely implication is on detector calibration: may need to re-train on a regular basis

● ML is evolving at a rapid pace, and we cannot predict where it will be by the time ET begins
○ We have come an enormous way in the past few years, never mind the past decade

○ Designing a computing model must take this rapid rate of change into account

○ Already have a “technology tracking” group in the EIB, maybe we need an “architecture tracking” group too?

● ML is not a simple algorithm to get started with, and remains a very empirical approach
○ It will be important to envision proper training for students for them to be able to properly contribute

○ Lots of this will be at universities, but train-the-teachers or central advanced programs will be helpful (HSF-like)

4



ML and data quality

● ML can be used to identify good data, but also to identify bad data
○ Can be trained for specific issues (such as classification of glitch modes)

○ Can also be used for unknown issues (anomaly detection)

○ Need to be careful in the latter case to not remove real signals

○ In the era of ET 50-year infrastructure lifetime, ML could really help reduce shift load via first-pass automated DQ

● ML may be the key to understanding all of the auxiliary channels
○ Leverage the full power of the data streams being collected

○ Could better help to understand when we have glitches, what is causing them, etc

● Don’t see a direct impact on the low-latency computing model
○ Training would likely be offline, and then refined (transfer learning, etc) online

○ Would likely be an (online) input to low-latency, not part of low-latency

5



Publishing ML results

● ML models are limited in their interpretability
○ Not easy to condense the ML output into a simple equation that can be put in a paper

○ Others trying to reproduce your results will struggle - even the same architecture will differ with each training

○ May need to publish full ML models for the community to be able to interpret results

● As mentioned, the online and low-latency system is likely to be evolving
○ Do alerts have to include the ML likelihoods or calibrations/DQ/etc to go with them?

○ Do we need to store the ML models used for an alert so we can internally cross-check alerts after the fact?

○ More generally, does ML usage change desired alert contents?

6


