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Overview of what done in past two years

A significant activity concerning the ET-LF conceptual
design of the seismic attenuation system was pursued.

After the conceptual baseline, a Virgo-like 17m-long
Ssuperattenuator (2011, reviewed in 2020), a shorter
configurations ~12 m height was examined and, going
into deeper detail and optimization, it resulted suitable.

Moreover, longitudinal control and its technical noise
have been studied, converging on a document that is
close to publication.

We have baseline seismic isolation system

A payload baseline system is included

The method to model and analyse the system
(in terms of performance and noise
projections) is developed.
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The latest works and this workshop on ET-LF Tower bases.

Cryostats and Cryostat content is the matter that should
be investigated.

We start from the core, baseline payload integrated to
baseline seismic isolation

= TM residual motion VS sensitivity has been studied
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Provided the good aspects of the double cavern, we
focus on single cavern, and consider the preliminary
modelling of tower bases.

Tilt and hierarchical control (HC) must be considered as
the mechanical content into the cryostats, constrained by
cryogenics, is involved.

So far, we focus on baseline Payload disconnected by
the thermal links

We derive preliminary considerations as intermediate
milestones

The next steps will be related to the links (started)
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Outline

1. Interaction between tower and suspension:
a. Effect of the tower design on the seismic noise propagation through the structure. Preliminar
analysis.

2. Angular control noise budget: Cryo-Pay control
a. Noise projection of SOFT (OpLev) and AA (WFS) control loop;
b. Identification of the major contribution to the control noise budget;
c. Consideration on possible design variations to the payload mechanics;
d. Consideration on possible requirements derivation of hardware noise levels.

3. Open points and next steps
a. Longitudinal actuation noise study on Reference solution+Cryo-PAY (HC4);
b. Implementation of heat-links on mechanical model.
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Use of the OCTOPUS* simulation software.
representation in block schemes of the physical
layout of the mechanical system.

estimate the behaviour of specific designed
systems, in terms of performance and general
requirements achievement.

Implementation of feedback control loops.

Each block is a node of the representation: the
dynamical variables (displacement, rotation, force,
torque) of an arbitrary pair of nodes are connected by
frequency domain functions.

Consideration on the effect of control noise is
of extreme importance, since it is the real
limitation to reduce the TM motion down to the
requirement for a LF GW detector.

* P. Ruggi, M. Pinto, L. Trozzo, G. Cella, E. Majorana, G. Losurdo, P. Chessa, A. Longo, A.
Viceré. Mechanical simulation tool based on impedance matrices — Phys. Rev. D 112, 022002.
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The methodology
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Seismic background effect through the structure* and impact on the design
Case of study: Baseline 12m Suspension and Cryo-PAY model

Baseline solution** for the single cavern option + Cryo-PAY have
been taken as case of study.

position
of HC4

| ** Trozzo, Spada, Ruggi, Pinto, Lucchesi, Losurdo - A

Superattenuator for the ET-LF Test Masses. |l.

Workshop on ET-LF TM Tower Integration March 25 —27.

position of IP
Base Ring

2025.

| ** Spada, Losurdo, Lucchesi, Pinto, Ruggi, Trozzo -
Feasibility and Compliance Study for the Seismic
Isolator of Low-Frequency Einstein Telescope Test
Masses. GR24/Amaldi16 Conference Proceedings.
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* Credits: G. laquaniello - Cryostat Simulations. ET-ISB susp meeting. 24-01-2025.
An update might be elaborated soon by G. laquaniello



Tower modal analysis - seismic transfer on TM
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Modal analysis on several tower 3D design have been carried out*. Two
solutions have been considered for now.

1)  Virgo-like solution (63.2 T; 7.6Hz mode);

2)  Decoupled Cryo-Tower solution (127.8 T; 19.42 Hz mode).
Input displacement at the height of the base of the suspension (BR) has
been applied; displacement response of the BR has been taken as output.
2RI IR A TN JEFAIZLELEEELE Results have been fitted (with pessimistic higher Q) and inserted in the
seismic model in order to evaluate the overall noise propagation along the

a Credits: G. laquaniello - Cryostat’s Simulations. ET-ISB suspension chain down to the TM.
susp meeting. 24-01-2025. 8

Decoupled Stiffeners structure
Solution n®;
Mass : 1278 T




Seismic transfer down to TM - including tower modal response
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Total transmission of ground noise (H and V) to the test mass. The dominant part is the vertical component, which allows to
transmit the horizontal modes of the tower, given an arbitrary additional coupling mechanism.

- At LF (3 Hz) the nominal Thermal noise dominates and there is no reason to further constrain the system design to
evade structural mode effects.
De facto a mode at 7 Hz is not harmful (not even visible in the projection), but the 2nd mode @ 38 Hz of the 1st
solution may approach the sensitivity, but arises anyhow in the middle of vertical mechanical modes (crossbars...).
Iterative process, we have the tool to properly design the tower base and make the effect negligible
Too massive (deployment issues) is 53 and 128 T are to high? Can we optimize adopting smaller values (eg 40-50 T
Tower + Cryostat) ?
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Angular control of the
Cryo-Payload
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Case of study: Baseline 12m Suspension and Cryo-PAY model

Acc sens HP POS sens LP

D
e fP—

MA: H and V actuators for Marionette o

longitudinal (locking) and
angular (LC, AA) control

Cage ©
MI: H actuators for
longitudinal (locking) control

Mirror o

- Case of study: baseline solution + Cryo-PAY**
« - Basic ID control strategy.
- Angular control using OpLev and WFS ("soft" mode on OpLevs)
- No actuation neither on the PF, nor on the RM(cage),
relevant not to add further components into the cryostat

4 ** Koroveshi, Busch, Majorana, Puppo, Rapagnani, Ricci, Ruggi, Grohmann - Cryogenic payloads for
the Einstein Telescope: Baseline design with heat extraction, suspension thermal noise modeling, 14
and sensitivity analyses. Phys. Rev. D 108, 123009
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Magnitude [rad/sqrt(Hz)]

Angular control noise SOFT tx control - Payload baseline design (dz = 3 cm)

Baseline: 3Hz diff mode critical for the angular
budget. Residual rotation dominated by the sensing
of the OpLev sensors (current known noise model
used as a first step).
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Control based on OpLev sensing
at Marionette level.
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Residual motion 6e-10 rad @ 3 Hz. Assuming a coupling
ang2length of 1e-5 (miscentering), we reach around 6e-15 VS
~107"-19 m/sqrt(Hz) of the sensitivity requirements.
Proposal:

modification of a payload mechanics parameter (dz).
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SOFT tx - Modified mechanics: different spacing comparison

) ) Parameter: MIR fibers separation (dz). From 3 cm we
' _”tjl'?nse'bqqggt'_-"TM IXroatlon ________ increased up to 15 cm, and potentially 40 cm, in order

" to move ahead the diff mode. This allows to use a low
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3Hz -> projection of 3e-16 m/sqrt(Hz) in sensing noise of OpLev sensors: flat 10*-12

Improvement of 1 order of mag: 3e-11 rad @ I Hypothesis: assume the value for a plausible
sensitivity. Not yet enough. rad/sqrt(Hz) (2 order of mag less).
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SOFT tx control - Optimistic OpLev sensing noise model

Noise budget - TM SOFT TX rotation
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Assuming a more optimistic value for the OpLev sensing noise,
we reduce the projected reintroduction of control noise.

10713 rad @ 3 Hz -> 10*-18 m on the sensitivity.
Room for control filter improvement (steeper roll-off).

the original sensing noise model was
not compatible with a chosen
miscentering of 1e-5m;

This value would require (roughly) a
level of SOFT angular accuracy of 1
nrad;

A sufficient sensing noise for this
angular requirement is 1e-12
rad/sqrt(hz).
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SOFT ty control - TM residual rotation
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Noise budget - TM SOFT TY rotation
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Same limitation for the Yaw ty: 3e-13 rad @ 3 Hz. -> 3e-18m in
sensitivity.

In this case, concerning mechanics, we have less margin of
modification since 0.9 Hz (Mario/Mirr diff mode) can’t be easily
moved.
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AATY (no RP) noise budget

Wavefront sensing alignment loops: No radiation pressure effect
included at this stage. In this case we project only control noise
focusing on the noise within detection/control band.

1

Noise budget - TM AA TY rotation
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Assuming a value for the WFS sensing noise with floor at

1e-14 rad, we obtain a residual motion of 3e-13 rad/sqrt(Hz)

@3 Hz -> 3e-18 m/sqrt(Hz) in sensitivity.
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AA TX noise budget (low bandwidth control)

Linear Alignement WFS - AATX
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Recap of angular noise budget and Concluding Remarks

Projection of angular control noise on sensitivity
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A YAW AND PITCH TFs are significantly different
due to the intrinsically different structure

2

Results reported here enhance the plausible
limitations coming from the angular
control noise;

Results are preliminary, we are interested in
the ‘order of magnitude’ gap WRT the
sensitivity requirements.

The methodology enlightens the ‘knobs’ on
which the design effort be focused:
hardware noise, control strategy, control
design...

This can be used as a tool in order to derive
requirements on the performance of the
hardware (sensors and actuators) in order to
reach the sensitivity goals.

Additionally this could also drive the optimal
choice for the mechanical design of the
suspension elements (SA & Cryo-PAY) and
their control strategy.

At 3 Hz the OpLevs must be improved by 199
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Next steps: 4-stages longitudinal

Marionette DAC noise projection

- [—MARDAC noise proj|

- -ET-LF sensitivi D

Need to tackle the longitudinal
actuation noise budget;
a With the current DAC hardware
we are few orders of magnitude
far from the requirements;

10°
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Low-noise actuation strategy is needed: (Hierarchical control*);
Strategy already proven to be effective and stable on Virgo ITF**.
Updated measurement of ground TILT*** noise at LNGS available to
test the strategy.

* Ruggi, Pinto, Majorana, Losurdo - Considerations on the control strategy for the Kiock
ET-LF superattenuator: ET-0527A-24; LOCK
** Ruggi, Pinto, Majorana, Losurdo - Modelling further advancement of Virgo-like CONTROL

seismic isolation system towards ET-LF design: 3rd ET annual meeting, Warsaw
Nov,13th 2024 ET-0637A-24;

Hierarchical control

Acc sens HP POS sens LP
Ve > Pe —\
KIP
Controller
— T\ M —
LPIP Comp 1P P
IP-MI
F2
Comp F3
BPF4 F4-MI
PF
Comp
BP MA MA-MI RM

v

HPF4 HP MA HPMI

*** Naticchioni, Trozzo, Ricci M., Pirro, Majorana, Di Giovanni - Low frequency
noise measurements at LNGS & tilt estimation - ET-0434A-25
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Concluding remarks

Structural Tower

Needed effort to feature the tower base structure. Notice that a 7 Hz peak is not harmful. The effect is smaller or
comparable to that of other parts that need improvements on the superattenuator. There should be an easy margin to tune
properly the design.

Angular noise

By separating more the two suspension units located on the side of the Mirror, differential mode is shifted at higher
frequency and left out of loop = the angular noise contamination is reduced. The OpLev sensing noise should be
FURTHER reduced (~10 at least at 3 Hz, this is neither trivial nor a show stopper).

Applying the same technique to ty (yaw) is not easy = however, some smart design might diminish the noise impact

Global noise

For the overall design the complete control strategy and global signals must be considered. Several noise sources
preventing the reaching of the sensitivity. Issues: electronics, seismic background, tilt at the ground. TRUE FOR BOTH
LOCK AND ANGULAR CASES

NEXT STEPS (timeline ....)

Improving the quality of the assumptions (more reasonable tilt noise model associated to the environment). Distribute the
lock force passing from HyerarchicalControl-3 to HC-4 (another point of the chain, possibly a room temperature stage
above the cryostat (tested for Virgo using F7).

Given the latter, an iterative process of mechanical optimization will be pursued.............
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