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Extreme Performance in Optical Coatings (EPOC)

* <1% uniformity in 62 cm diameter without masks

* RF gridded ion sources with monolithic Ti grids: main
source + assist source

» Process gases: Ar, N,, O,, H
« Background gases: O,, N,

* Process controlled by broadband optical monitoring

« PCI (1064, 1550, +), CRD (880,1064, 1550),
spectrophotometry and microscopy (mapping), automated
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Brownian (thermal) noise: internal energy
dissipation in the test masses

Using the fluctuation-dissipation theorem, assuming a Gaussian beam and negligible losses in the
substrate we can approximate the thermal noise power spectral density as:
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d - coating thickness
W : beam radius (<< test mass radius)
2ksT d Y' Y 5
~ —_ —_ . I I — -1
S, (f) 2F way v - v : coating mechanical loss angle (= Q)
Y :substrate Young's modulus

Y’ :coating Young’'s modulus

* Note that the thermal noise is temperature and thickness dependent.

« S,(f) can be measured in multilayers (Gras, S., & Evans, M. (2018). “Direct measurement of coating
thermal noise in optical resonators”. Physical Review D, 98(12), 122001.)
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Mechanical loss angle is our key parameter

Sx(f) ~ 2hpl_d (|)<Y -+ Y) ¢ : coating mechanical loss angle (= @)

» Characteristic of the material (single layer or multilayer).
 Frequency and temperature dependent.

« Can be measured by ringdown experiments ( + elastic theory considerations). Vajente, G., et. al.
Review of Scientific Instruments 88.7 (2017): 073901.
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* Quotient between real and imaginary part of the material’s Young's modulus.
 Measure of the energy loss in the optical cavity.

« We can determine the mechanical loss angles for the high and low index materials and then

estimate the thermal noise of the mirror (not perfect but good approximation). Hong, T., et. al.
Phys. Rev. D 87, 082001 (2013).
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Mechanical loss relates to low energy excitations

We conceptualize these excitations as two-level systems and therefore changes in the atomic
structure lead to elastic dissipation.
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Coordinates
o Materials have a distribution of TLSs.

Ediger, Mark D. "Perspective: Highly stable o Low temperatures — quantum tunneling.
vapor-deposited glasses."” The Journal of
chemical physics 147.21 (2017): 210901. o T >5K — thermally activated transitions.



What we know about
mechanical loss In binary
oxides and doped Ta,0;
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High index materials have the highest loss angles
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» Bulk silica has a much lower loss angle than silica coatings.

« High index materials have loss angles at least an order of magnitude higher than silica.
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Mechanical loss of binary oxide thin films
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Fazio, Mariana A., et al. "Comprehensive study of amorphous metal oxide and Ta205-based mixed oxide coatings for
gravitational-wave detectors.” PRD 105 102008 (2022).
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Mechanical loss of binary oxide thin films: amorphous
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Mechanical loss of binary oxide thin films: amorphous
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Exploring different dopants for Ta,0;
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S Dopant concentration was kept ~ 20%

<

= Ta,Os i 2.12 + 0.01

o TiO,: Ta,0x 0.27 + 0.04 2.19 + 0.01

T Nb,Os:Ta,05 0.12 % 0.01 2.11 +0.01

w

- 7r0,:Ta, 05[] 0.23 + 0.01 2.07 + 0.01

pd

~ HfO,:Ta,Os 0.23 £ 0.02 2.05 £ 0.01

(@) D

% Al,O5:Ta,0s 0.17 £ 0.01 2.01 % 0.01

_<

= Si0,:Ta,0s 0.26 + 0.01 1.93 + 0.01
/ Zn0:Ta,Os 0.20 + 0.01 2.05 + 0.01

Sc,05:Ta,0: []  0.105 % 0.007 2.08 + 0.01

[*] Abernathy, M, et. al. “Exploration of co-sputtered Ta205-ZrO2
thin films for gravitational-wave detectors” Classical and Quantum
Gravity, 38(19):195021, 2021.

[**] Fazio, M, et. al., “Growth and characterization of Sc,05 doped Ta,O5 thin
films”, Applied Optics, 59(5) : A106—A111, 2020.
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Mechanical loss for Ta,0s-based mixed oxide coatings

Annealing temperature: »
* 6000C § 6500C ? 7500C ; 8000C DOpant add|t|0n genera“y redUCeS
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Fazio, Mariana A., et al. "Comprehensive study of amorphous metal oxide and Ta205-based mixed oxide coatings for
gravitational-wave detectors.”, PRD 105 102008 (2022).
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Absorption loss and thermal noise estimation for Ta,0;-
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Bonus: Fazio, M, et. al., “Prediction of crystallized phases of \506
amorphous Ta205-basedmixed oxide thin films using a _ _
density functional theory database”, APL Materials, HR design: QWL of doped Ta,05 + QWL SiO,

9(3):031106, 2021. (transmission ~ 5 ppm)



Lessons learned from
Ti0,:GeO,
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The problem of bubbles - annealing induced defects

©)

500 C

Seem to depend on chamber base pressure
(= water partial pressure)

EPOC suppressed these defects by lowering
base pressure to 6 — 8 x 108 mbar

Others have solved it by decreasing Ar flow,
lowering base pressure and/or growing at
high temperatures (150 C)

C7979

Pre-annealed C7979

TiO,:Ta,0;, cation ratio = 0.27

Bright field HAADF

P=5—-8x 108 mbar P=25x 107 mbar
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Structure evolution with annealing - Raman

2.0 4

1.5

1.0 1

0.5 1

As deposited

300C

500 C

500C - 20 hrs

500 C - 100 hrs
575 C G

575 C-100 hrs

575 C-200 hrs
585 C

595 C

595 C - 100 hrs <
600 C-100 + 100 hrs
600 C - 1000 hrs

P
P

-1.0 1

Visualization of Raman with PCA.

Structure of 500 C — 100 hrs similar to
that of sample annealed at 575 C for
10 hrs

Structure of 575 C — 100 hrs close to
that of samples annealed at 595 C /
600 C for 100 hrs

Structure of 595 C — 100 hrs and 575
C — 200 hrs are very similar

We see similar structure when annealing at lower temperatures for longer soaking time

This can allow to design annealing protocols that induce the desired structure and avoid crystallization

Raman combined with ML methods has provided significant insights into the structure
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Conclusions

v" For binary oxides, mechanical loss is related to their amorphous morphology.

v In doped oxides, the resulting structure (especially after annealing) can have
unexpected features.

v The issue of bubbles points towards more research on the IBS process, to determine
origin of defects.

v TiO,:GeO, has been a humbling lesson in expecting the unexpected.

v" ML techniques have been employed to improve characterization techniques with great
success.

v We still have much to learn (and discover) from oxide coatings.
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