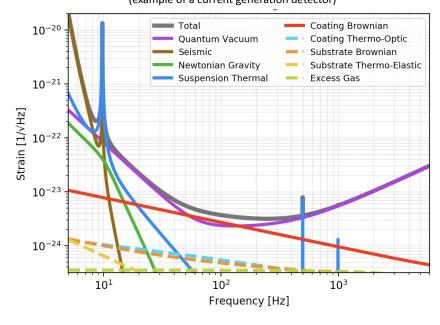


Gravitational Wave Detectors

- Michelson interferometer using many 'tricks' to increase the sensitivity
 - Several kilometer long arms
 - Suspended mirrors
 - High laser power
 - Squeezed light
 - Arm cavities formed by input test masses (ITMs)
 and end test masses (ETMs)
 - 0 ...
- Currently: 5 active detectors:
 - LIGO in Livingston and Hanford, US
 - Virgo in Cascina (near Pisa), Italy
 - o GEO600 in Ruthe (near Hannover), Germany
 - o KAGRA in Kamioka mine, Japan



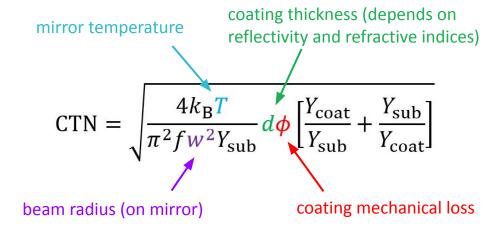
Limitations of Current Gravitational Wave Detectors

> < 50Hz

- Seismic / environmental noise, coupling either directly or via gravity gradient forces
- Radiation pressure noise, photons pushing on suspended mirrors
- around 100Hz
 - Coating thermal noise, Brownian motion of mirror surface
- > 1 kHz
 - Shot noise, counting statistics of photons

Advanced LIGO design sensitivity (example of a current generation detector)

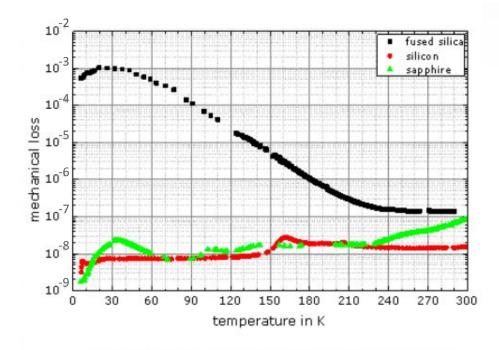
Plans and Challenges of Future Detectors


- Aim for a factor 10 improvement at mid and high frequencies
 - "within reach of continuous improvements"
- Low frequencies: improvement more a factor of 100 to 1000
 - → only possible with new approaches "disruptive technologies" (e.g. cryogenics)
- Plan for the Einstein Telescope: Split detector into
 - Room temperature and high laser power at high frequencies
 - Low temperature (see next slide) and low laser power at low frequencies

Coating Thermal Noise (simplified model)

Coating thermal noise (CTN)

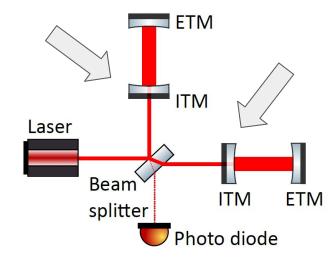
- Lower for larger beams
- Determined by material properties of coating and substrate
- Frequency dependent: more prominent at low frequencies
- ➤ Temperature dependent
 → motivation for cryogenic mirrors
 (at low frequencies)
- Thin coating


→ Motivation for low temperature

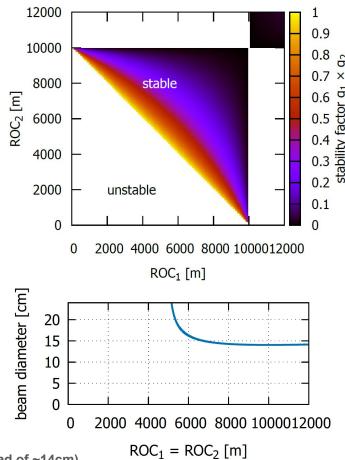
Mechanical loss of (currently used) fused silica increases at low T

Mechanical loss can be strongly temperature dependent

- Increases significantly on cooling for fused silica.
- Slightly decreases for silicon.
- Similar for Sapphire


→ Motivation for investigating silicon

[R. Nawrodt et al.: Cryogenic Setup for Q-factor measurements on bulk materials for future gravitational wave detectors, in Proceedings of ICEC22-ICMC2008 (2009)]


Challenges

- Our mirrors require low optical absorption as
 - Some of our mirrors have to be transmissive
 - Absorption would heat the cryogenic mirrors
 - Tolerable absorption: order of a few 10 ppm/cm

Challenges

- Our mirrors require low optical absorption as
 - Some of our mirrors have to be transmissive
 - Absorption would heat the cryogenic mirrors
 - Tolerable absorption: order of a few 10 ppm/cm
- Mirror diameter has to be approximately 45cm (or larger) with a mass of ~200kg
 - To reduce coating thermal noise
 - To reduce radiation pressure noise
 - Due to laser beam propagation in 10km long detector arms
 - Mirror diameter has to be about2.5 x beam diameter or more

(this is for 1550nm; at 1064nm, the beam is slightly smaller, i.e. min. ~12cm instead of ~14cm)

Silicon, Sapphire, (Germanium)

- ➤ Silicon requires to move from 1064nm to e.g. 1550nm
 - Possibly 2um as beneficial for some coating materials
- Low optical absorption requires very pure material, i.e. float zone silicon or possibly magnetically purified Czochalski silicon
 - → High-purity material not available in such large sizes Two options:
 - (a) make large material purer: optimize process; (what impurities matter most?)
 - (b) make pure material larger: optimize process; composite testmasses;
- ➤ Sapphire can be used at 1064nm
 - Used in KAGRA
 - Has not yet achieved envisioned low temperature
 - Issues with inhomogeneigites, absorption, birefringence, bubbles
 - KAGRA mirrors are smaller than ET mirrors due to shorter arms; (2.5 x minimum beam diameter = ~20cm)
- (Germanium: Shares many of the silicon issues, but has a higher density, allowing for smaller mirrors from a radiation pressure noise point of view.)

Silicon, Sapphire, (Germanium)

- Silicon requires to move from 1064nm to e.g. 1550nm
 - Possibly 2um as beneficial for some coating materials
- Low optical absorption requires very pure material, i.e. float zone silicon or possibly magnetically purified Czochalski silicon
 - → High-purity material not available in such large sizes

Two options:

- (a) make large material purer: optimize process; (what impurities matter most?)
- **(b) make pure material larger:** optimize process; composite testmasses;
- Sapphire can be used at 1064nm
 - Used in KAGRA
 - Has not yet achieved envisioned low temperature
 - Issues with inhomogeneigites, absorption, birefringence, bubbles
 - KAGRA mirrors are smaller than ET mirrors due to shorter arms; (2.5 x minimum beam diameter = ~20cm)
- (Germanium: Shares many of the silicon issues, but has a higher density, allowing for smaller mirrors from a radiation pressure noise point of view.)