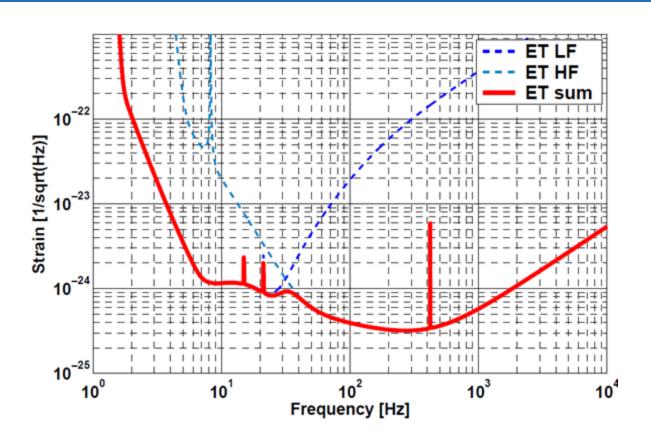
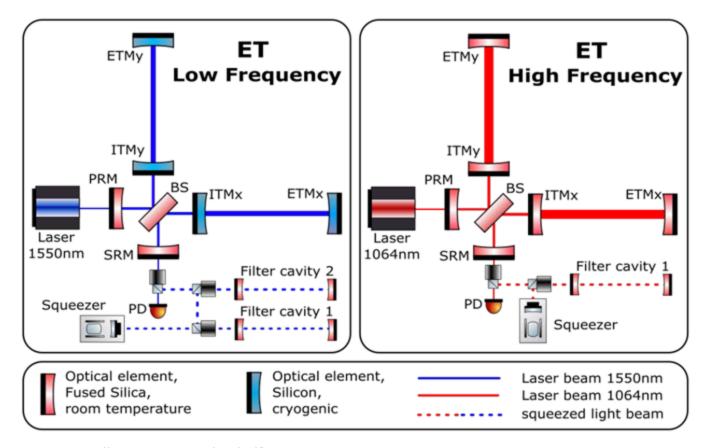
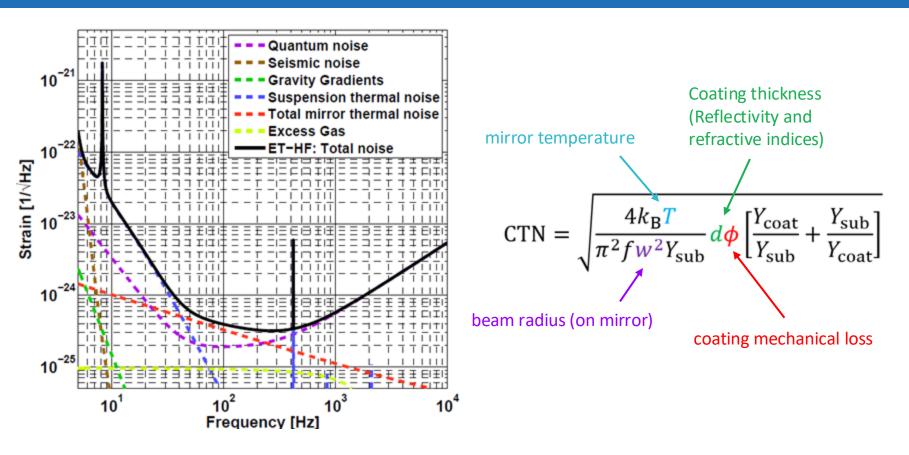


Materials for Advanced Detectors

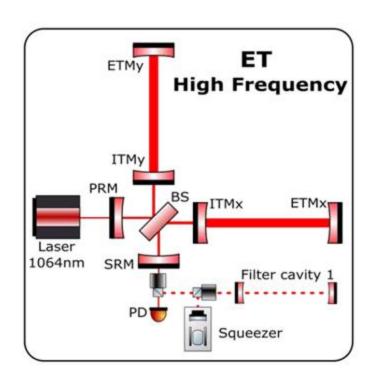

Coatings for Future Gravitational Wave Detectors


Alex Amato

Maastricht University and Nikhef







Mirror Requirements

Mirror Requirements

AdvVirgo - ET Design Report Update 2020

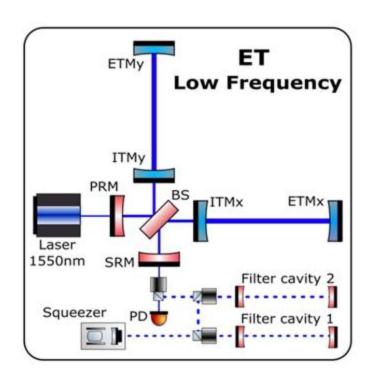
Parameters	Adv Virgo	ET-HF	Better for shot noise
Arm power	100 - 150 kW (O4)	3 MW =	Worse for point absorbers Worse for thermal lens
Mirror mass	42 kg	200 kg	
Temperature	290 K	290 K	Better for radiation pressure Better for fibres thermal noise
Laser Wavelength	1064 nm	1064 nm	
Mirror diameter	35 cm	62 cm	Better: 2x CTN reduction from a 2x
Beam radius	5 - 6 cm	12 cm	→ larger beam Aiming at a x10 reduction @100Hz
Bulk absorption	Suprasil 3001/3002 0.2 ppm cm ⁻¹	Fused silica	(arm length x beam size x better coatings)
Coating absorption	0.3-0.4 ppm		

Advanced Virgo: DOI 10.1088/0264-9381/32/2/024001 ET Design Report 2020: https://apps.et-gw.eu/tds/ql/?c=15418

AdvVirgo - ET Design Report Update 2020

Parameters	Adv Virgo	ET-HF	
Arm power	100 - 150 kW (O4)	3 MW	
Mirror mass	42 kg	200 kg	
Temperature	290 K	290 K	
Laser Wavelength	1064 nm	1064 nm	
Mirror diameter	35 cm	62 cm	
Beam radius	5 - 6 cm	12 cm	
Bulk absorption	Suprasil 3001/3002 0.2 ppm cm ⁻¹	Fused silica	
Coating absorption	0.3-0.4 ppm		

Coating being worked on for A+, i.e. should be ready for ET


Main work on:

- Scaling up to large size (Production Technology)
- Better coating (lower CTN)
- High-power laser related problems

SiO₂ and mixed oxides [1][2] (likely) TiO₂: GeO₂ (or TiO₂: SiO₂ or SiN_x [3])

[1] See talk by Mariana Fazio[2] See talk by Shima Samandari[3] See talk by Simone Marchetti

See more about research ongoing on coatings: https://doi.org/10.1002/adpr.202400117

AdvVirgo - ET Design Report Update 2020

Parameters	Adv Virgo	ET-LF	
Arm power	100 - 150 kW (O4)	18 kW	
Mirror mass	42 kg	211 kg	
Temperature	290 K	10-20 K	_
Laser Wavelength	1064 nm	1550 nm	
Mirror diameter	35 cm	45 cm	/
Beam radius	5 - 6 cm	9 cm	_
Bulk absorption	Suprasil 3001/3002 0.2 ppm cm ⁻¹		
Coating absorption	0.3-0.4 ppm		/

Better for radiation pressure Worse for shot noise

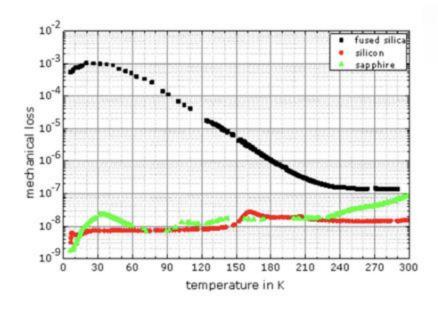
Better for radiation pressure Better for fibres thermal noise

Better for CTN
Increase complexity of detector
(how to cool it down? Frosting? ...)

Better for absorption

Better for CTN
Aiming at a x10 reduction @10Hz
(arm length x temperature x beam size x better coatings)

Advanced Virgo: DOI 10.1088/0264-9381/32/2/024001 ET Design Report 2020: https://apps.et-gw.eu/tds/ql/?c=15418


Oxides at Low Temperatures

Mechanical loss of (currently used) fused silica increases at low T

Mechanical loss can be strongly temperature dependent

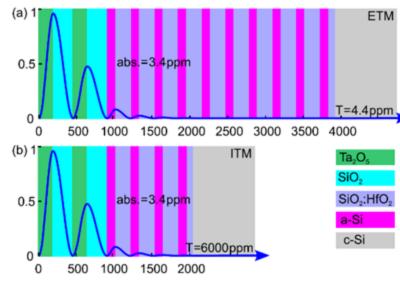
- Increases significantly on cooling for fused silica.
- Slightly decreases for silicon.
- > (Similar for Sapphire)

→ Motivation for investigating silicon

[R. Nawrodt et al.: Cryogenic Setup for Q-factor measurements on bulk materials for future gravitational wave detectors, in Proceedings of ICEC22-ICMC2008 (2009)]

J. Steinlechner Maastricht University

Possible Activities for ET-LF Coatings


• Longer wavelength (1550nm instead of 1064nm) opens up new material options:

- o a-Si low mechanical loss as low temp., but requires absorption reduction.
- SiN low mechanical loss at low temp., combination with a-Si being explored.
- SiO₂:HfO₂ can potentially meet ET-LF requirements in multimaterial design (see below).
- TiO₂ low mechanical loss at low temp., low absorption, but crystallizes easily during heat treatment (may be no issue).

0 ...

Other coating concepts

- Monocrystalline multilayers (e.g. AlGaAs, oxides)
- Crystalline/amorphous hybrid coatings.
 (e.g. crystalline toplayer)
- Multimaterial coatings: more than two materials in a multilayer stack.
- Nanolayers (to suppress crystallisation).
- Ion implantation of reflective layers [1]
- o ...

Possible Activities for ET-LF Coatings

- ➤ Identify final materials for low temperature and 1550 nm
- Set a clear absorption limit
- Verify multimaterial coatings:
 - investigate deposition conditions and heat treatment
 - o avoid cracks and blisters after heat treatment, due to stress
- Coating production:
 - increase size (mainly problematic for crystalline coatings)
 - Point-like defects reduction
 - o ...
- ➤ Combination of different coatings for ITM and ETM:
 - Different substrates for ITM and ETM
 - Different sizes for ITM and ETM
 - 0 ...