

Suspension control algorithms – DAMPING: OpLev and WFS signals used for LC and AA + Top Stage ID control

Manuel Pinto, Paolo Ruggi

Block scheme communication of DSP boards

Angular control logic scheme (LC / AA)

Local controls algorithms

SOFT and HARD control algorithms

SOFT and DIFF/COMM signals are recombined and processed in WE/NE PSDi

SOFT and HARD control algorithms

Quit ^Add ^Ins ^Del Modify Edit Compile Save Title Load Hrd_setup Page

Sensing matrix LVDT

1,2,3

CRADLE matrix

Sensing matrix ACC

Suggestions

- 1. Software, from the **users** pov, is quite intuitive (at least from my personal opinion): input-output relationship through basic or custom functions (simulink like).
- 2. Main functions for control operations are already implemented. Given interaction among subsystems this can be improved.
- 3. Drawback: **lack of documentation**. Simplest actions cannot be performed unless experts explain to you how to do them (e.g. even downloading one DSP board after one modification).
- **4. User friendly development can be improved** by (just to name a few):
 - 1. Detailed documentation;
 - 2. Traceability of actions;
 - 3. More probes (?) possibility to output more data.