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Finstein
lTelescope

* ET will be part of the third
generation of ground-based
interferometers

* Will be operative in the late
2030s

* The design is still under
scrutiny (triangular vs 2L) [1-2]

[I] Branchesi et al. 2023
[2] Abac et al, 2025 3
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Bayesian
analysis

* The gaussian likelihood is
expressed as

L(d | 8) < exp{—(d —5(0) | d - 5(0))/2}

* Itis very hard to sample
(extremely multimodal and
long evaluation)

* In LVK nested sampling is used
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Fisher Matrix

* To compute the Fisher Matrix which is defined
as

Fab = <(9 (91) logﬁ d|9 ’9 0o (ha ‘ hb>
where we need to derive the likelihood of the
data realization

* Each derivative requires calling the expensive
waveform function at least a few times (for
numerical diff methods)
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Dual(1.e, 1.8,
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Differentiations U 16

Dual{Nothing}(14.06,2.0,13.0)
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GWlulia

* Easy to learn

* Using automatic differentation (superior to numerical
differentation)

* Features advanced waveforms (e.g. PhenomXHM, PhenomD), all
written in Julia

* Very fast, e.g., using XHM 3 detectors ~ 0.5 sec per core)

* Does not rely on external packages (all is written in Julia)

 Based on arXiv:2506.21530

I1/11/25 Andrea Begnoni

using GWInference

parameters = GenerateCatalog(l_eee, "BBH")

FisherMatrix(PhenomD(), [CE1Id, CE2NM, ETS], parameters...)
»



Case study — Detector
design comparison

* T: triangular ET with 10 km arms featuring cryogenic technology.

* 2L_O: two aligned |5 km L-shape interferometers one in Sardinia, (o
one in the Meuse—Rhine (MR) Euroregion, both with the cryogenic ~ 1165 km
technology.

* 2L_45:same as 2L_0 with the exception that the orientations lead
to B = 45-.

Credits: [1]

[1] Branchesi et al. 2023
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Detector design comparison -
What to expect

What are we interested in?
* Cosmology with CBC
* Multimessanger with CBC

* Source properties of CBC
- SGWB

Detector preferences:[|,2]
« CBC:2L 45>2L 0>T
« SGWB: T=2L 0>2L 45

[17 Branchesi et al. 2023
[2] Abac et al. 2025
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Beyond GR

* GW from CBC can be important test
of GR

* Many possible aspects of GR can be
tested, e.g., tidal deviations, spin-
induced quadrupole moment

* |n this work, we focus on the Post-
Newtonian terms
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Post-Netwonian
terms

* In frequency domain the phase of a
GW can be expressed as

7
01 x 3" [ + 90 m g] 700
j=0

* Approximation valid for weak
gravitational fields and low velocities

* Used for the inspiral phase of
comparable mass CBC
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Post-Netwonian
expansion

* Expansion in terms of (v/c)
* Analytical GR predictions for

{9007 P1, P2, ¥P3, P4, L5, L5015, 6, P61, 907}

where the index represents two
times the PN order
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TIGER
[ramework

In the TIGER framework[9], one PN term
at a time is modified as

GR GR
o — (14 09k) o
We modified accordingly the waveforms
PhenomD and PhenomHM, ensuring that
they remain C1.

[9] Agathos et al. 2014
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Hierarchical
framework

P (8¢, | DNers, I) =

/dudaf\f(&op |, 0) P (g, 0| DNor 1)

+[6pp|
|0¢,|  such that / P (6¢pp | DNevs T) = 0.9
—|0pp|
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Comparison
with GW'TC-5

* We test the 90% upper bound from the
Fisher analysis with the actual LVK
results. The events analyzed are 9 and the
different catalog realizations give the
error bars.The violin plots are obtained
by the single events bounds.

e HLYV indicates that the detectors used

Single event bounds (HLV (P henomHM))

are Livingston, Hanford and Virgo. . L Single event bounds (HLV (P henomD))
HLV (P henomHM )

HLV (P henomD)
* There is great agreement between the LVK GWTC-3

Fisher and the GWTC-3 collaboration

Pq Py

results ' ' '
PN order
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Forecast for
ET

* We test 3 detector designs for ET

* All detectors improve significantly the
LVK constraint (2 orders of magnitude)
while -1 PN improves by 4 orders due to
the lower frequency minimum of ET

* These results correspond to approx. 4 Single event bounds (T)
Single event bounds (2L 45)

months of observations

Single event bounds (2L 0)
T

oL 45

2L 0

¥, ' : e P L
PN order PN order
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Forecast for
ET

* “How do the bounds scale with the B 5 golden events
number of sources?”

* “What is the role of the golden events
compared to the larger statistics?”
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Forecast for
ET

* We model the deviation as a gaussian
with mean p and std o.

* We inject events with no GR deviations,
and we recover the hyperparameters (L,
0).

* We combine the observations in a
hyperparameter framework

* These results corresponds to 4/5
months of observations - ). 0.00

v
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T

‘events

FOrecaSt f()r 0.010 . 600
E T 0.008

* How many detections are needed to
detect a GR deviation at 90% confidence 0.006
level? )

* We inject events with GR deviations 0.004
drawn from a gaussian with given p and o o

* These constrains can be achieved in -
: 0.002
weeks or days of observations

* We used 2L_45 and the PN | term

0.002 0.004 0.006 0.008
[
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Take home
messages

Andrea Begnoni

GW]ulia is a fast open-source tool to evaluate Fisher matrices of CBC

BGR deviations are SNR driven thus the different networks produce comparable
results

With ET, BGR test of the PN terms will reach an unprecedented level of precision
with just a handful of sources

20
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What E'T

ET 15km |
ET 15km 290K |

brings to the |ENES =

LIGO H O3

table

* Larger frequency space
* Detections up to 50k BBH per year

* Detections up to z~10

« SGWB: Qaw ~ 10712

I1/11/25 Andrea Begnoni 22



Case study - SNR

Network SNR > 8 | SNR > 12 | SNR > 20 | SNR > 50 | SNR > 100
T 87.6 % 71.1 % 43.3 % 9.1 % 1.7 %
2L 0 89.3 % 78.6 % 56.5 % 15.7 % 3.6 %
21,45 94.1 % 82.9 % 58.1 % 15.6 % 3.5 %
2L_290K_0 87.4 % 75.5 % 52.3 % 13.4 % 2.9 %
2L 290K 45 | 92.3 % 79.6 % 53.5 % 13.3 % 2.8 %

11/11/25

The table represents the percentage of events above the threshold written on top

of the column
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Case study — Angular Precision

Network | Q < 10 deg? | Q < 100 deg® | Q < 1000 deg?® | © < Whole sky
T 0.31 % 3.86 % 12.65 % 34.24 %
2L_0 0.23 % 4.68 % 32.91 % 75.43 %
2L._45 1.01 % 9.63 % 34.04 % 72.22 %
2L._290K_0 0.18 % 3.79 % 30.14 % 72.49 %
2L_290K _45 0.81 % 8.67 % 32.18 % 68.72 %

11/11/25

The table represents the percentage of events of which the 90% sky areas are less
than the threshold indicated in each column.The 45° networks outperform the
other networks and the T configuration. In particular, the T is comparable when
considering the few high-precision sources, however, the performance degrades

significantly for sources with precision worse than 1000 deg?.

Andrea Begnoni




Numerical e ey
derivatives -

* There is an optimal step size to
maximize the accuracy

* The step size is usually dependent on
both the function and the point where
the derivative is calculated

* There are better alternatives to finite
difference methods

Credits: Wikipedia
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Automatic
Differentiations

[1/11/25

* Accurate (at machine level)
* If a derivative exists, it will find it

* Very fast (2x the evaluation of the target function in our case)

* Adopted from ML



Variable = [ value, 0,variable, d,variable ]

Automatic

/ / / f / /\
(u,u) + (v,v) =(u+v,u +7)

/\ ! I / A
(u, ') — {(v,v') ={(u—v,u —v)

Differentiations Wl S i

/ /
U UvUV—uUuv
'I ‘ ,\‘ i /'- ] / !,\
i) 9) = (5, 55) @#0
IL’.’

v
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Wavetorms

* The measured data consists of the GW signal plus a noise
d(t) = s(t) +n(t)

* Where the signal is the projection of the strain onto the
detector

S = h+e+ijDij + hxexijDij = h F, + hy Fy

* A waveform is a function that associates to the source
parameters the GVV, in time or frequency domain

* Here we use the IMRPhenom waveforms [3-8] (up to
XHM) that work in the frequency domain.

[3] Khan et al. 2015
) [4] London et al.2018
h — Z Ay (f)ezq)(f) [5] Garcia-Quirds et al. 2020
[6] Pratten et al. 2020a
k [7] Pratten et al. 2020b
[8] Dietrich et al. 2019
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def (n):

if n =8 or n == 1:
return 1
else:
return n * factorial(n - 1)

# Example usage

Julia

print(f"The factorial of {num} is {

e Compiled (Python is interpreted)
function factorial(n)
* Designed for scientific computing ifn=oeo || n-=1
return 1
* As easy to write as Python else . « factorial( )
recurmn n dCLCOria n - 1
end

end

# Example usage
num = 5

‘-hh\“\\\; println(“"The factorial of $num is $(factorial(num))™)
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Future plans —
Fisher informed

HMC

* Bayesian data analysis of CBC is very
computationally demanding (e.g., using nested
sampling)

* If we are interested in future observations, we can
simplify the inference problem, i.e., we know an
approximate location of the maximum posterior

*  W/ith automatic differentiation we can perform fast
and accurate gradients

* We can perform Hamiltonian Monte Carlo
sampling, injecting information from the Fisher Matrix

11/11/25 Andrea Begnoni
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Case study — Angular Precision

CDF x Number of events
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Cumulative density function times the number of events as a function of
the 90% sky area. Right: zoom in of the left plot
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Source properties

Chirp mass and symmetric mass ratio
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The plot represents the percentage of events of
which the |-sigma error is below |e-4 for the
detector chirp mass and 5e-4 for the symmetric
mass ratio. Only ~ 1/3 of sources that satisfy the
mass ratio requirement satisfy both requirements.




Source properties

Chirp mass and symmetric mass ratio
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The plot represents the percentage of events of
which the |-sigma error is below |e-4 for the
detector chirp mass and 5e-4 for the symmetric
mass ratio. Only ~ 1/3 of sources that satisfy the
mass ratio requirement satisfy both requirements.




Cosmology
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Luminosity distance and sky area
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The advantage of the 2L_45 over 2L_0 in the
luminosity distance and in the sky area is erased
when we require both requirements to be
satisfied at the same time.




Cosmology
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The advantage of the 2L_45 over 2L_0 in the
luminosity distance and in the sky area is erased
when we require both requirements to be
satisfied at the same time.




Sky area and luminosity distance —21._0

Number of events with Alnd; < 0.4 Number of events with sky area €2y, < 500 deg?

Sky maps in the detector frame for 2L_0.
Left: number of events for which the relative luminosity distancel-sigma error is under 40%

Right: number of events for which the 90% sky area is under 500 sqdeg.
11/11/25 Andrea Begnoni 36



Sky area and luminosity distance — 21, 45

Number of events with Alnd; < 0.4 Number of events with sky area Q,, < 500 deg?

Sardinia position 2 L_4 5

MR position

Sky maps in the detector frame for 2L_45.
Left: number of events for which the relative luminosity distancel-sigma error is under 40%

Right: number of events for which the 90% sky area is under 500 sqdeg.
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