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Introduction

Huw Haigh

Einstein Telescope promises vast increase in frequency
range -> sensitivity to many more mergers.

With such reach, matched filtering comes with large
computational overhead.

Deep learning offers potential (semi-) model
independent technique with bulk of computational cost
occurring before application.

Burst signals from mergers involving IMBHs are short
- we study the use of convolutional autoencodersto — >

extract from noise.
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Convolutional Autoencoders

e Convolutional auto-encoders are deep neural nets designed
to compress and then reconstruct input image data.

INPUT
e Structure:

o  Encoder: convolutional + pooling layers to pick out important
patterns and compress to internal representation

o Latent space: bottle neck that holds learned representation of
key features.

o Decoder: reverse of encoder -> reconstructs image from latent
space representation.

'"}@@@

e Anomaly detection: trained on background/noise images,
learns to represent features in latent space -> reconstruct
noise. High reconstruction error (MSE) indicates anomalous
input image.
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Spectrograms

®  Full ET MDC - 1 month of simulated ET noise in R
2048s segments sampled at 8192Hz (use only E1 g 256

o> 128

channel). L o

e Splitinto 2s chunks, PSD estimated using FFT, noise
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e Greyscale images of 256 (frequency) x 31 (time)
pixels - normalised to [0,1] before training.
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e Waveforms generated using IMRPhenomHM -

randomly sampled masses & luminosity distance fo%6
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Weak Supervision

. .. . . . . Lo - MSE loss of noise spectrograms
® Introduce signal-injected (varied mass and luminosity distance) notse pectios

data set to training, along with slightly altered loss function. Lanom - MSE loss of anomaly spectrograms

e Hyperparameter, m, captures desired/target level of MSE m - Target MSE anom/noise separation
separation between noise and anomaly reconstruction.

e When desired separation is achieved, normal MSE loss of AL = ReLU(m — (Lanom — Lnoise))
noise-only spectrogram is recovered.

ReLU Activation Function - - m — (Lanom — Laoise)s ¥ Lanom — Lnoise < M,
T 0, if -Eanom - Lnoise = m.

Ltotal = LMS E (xnoise) + AL
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Noise Modelling
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Overtraining check: compare MSE distribution of training and
testing ET noise spectrograms -> flat ratio implies
generalisation to unseen data.

Anomaly definition: chosen threshold value in MSE loss, above
which spectrogram is flagged as anomalous.

Define threshold based on statistical likelihood of noise
fluctuation:
Threshold = p + no, (n=3,5)

Assuming 2s spectrograms, 100% duty cycle, 30 and 50 equate
to FAR:

30 — p= 1.35x10° — FAR = 2.1x10* events/year
50 — p= 2.87x107 — FAR = 4.5 events/year
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MDC - MSE
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e Weak supervision shows large improvement in separating MISE
between noise and injected spectrograms.

e Effect of hyperparameter m (=5x1072) quite clear in distribution of
MSE after weakly supervised training.
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MDC - IMBH mergers

MDC mergers of M = 100
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e Events falling below 50 shown as red crosses, above with blue

diamond.

e Weak supervision increases efficiency from 23% to 100% of mergers

which involve or form IMBH
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MDC - other masses

140

100 -

SNR

60 -

40 4

201

Huw Haigh

Subsample of full MDC1 merger injections
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e Introduction of weak supervision provides huge increase in

achievable efficiency for target burst signals

e Model shows strong ability to generalise to other merger signals

outside of initial target

Towards a CNN-based anomaly detection pipeline



Conclusion
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Large frequency range and sensitivity of Einstein Telescope presents substantial
increase in computational overheads - ML could offer a solution with computational
work done in training stage.

CNN autoencoder for anomaly detection shows ability to recover (up to 100%) IMBH
burst signals from ET noise.

Inclusion of weak supervision to training greatly improves efficiency and strong ability
to generalise to signals outside initial target range.

Next steps:
o Inclusion of detector response. Ork o
. : . r
o Injected glitches alongside mergers eadystal'ted,

o  Study possibility of analysing multiple channels

Paper draft submitted - feedback very much appreciated!
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