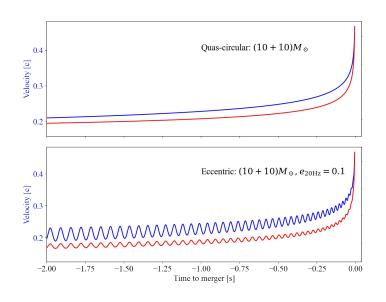

Fast likelihood evaluation of eccentric-precessing binaries using relative binning

Soumen Roy

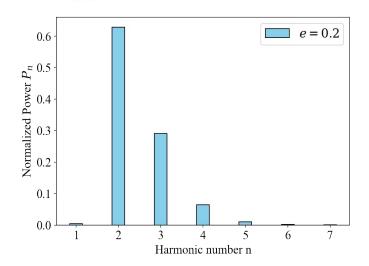
In collaboration: **Justin Janquart**UCLouvain & Royal Observatory of Belgium

4th ET Annual Meeting, Opatija 12th November 2025

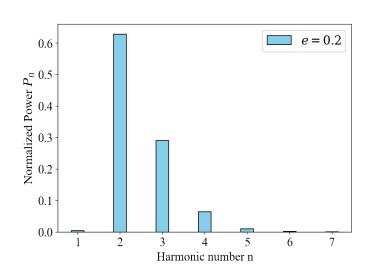

Why fast likelihood evaluation for eccentric signals

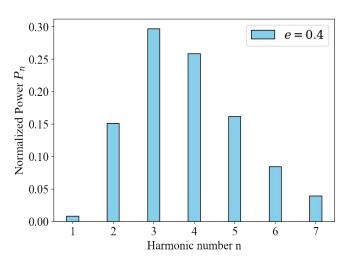
- 3G observatories expect to see many low-mass eccentric binaries
 - Eccentric capture in dense environment: globular clusters, young stellar clusters, and AGN disks
 - Results in a highly eccentric binary and merges quickly
 - NS and stellar mass BH are abundant in in dense astrophysical environments
 - Expected to detect <u>hundreds to thousands</u> of eccentric binaries with 3G

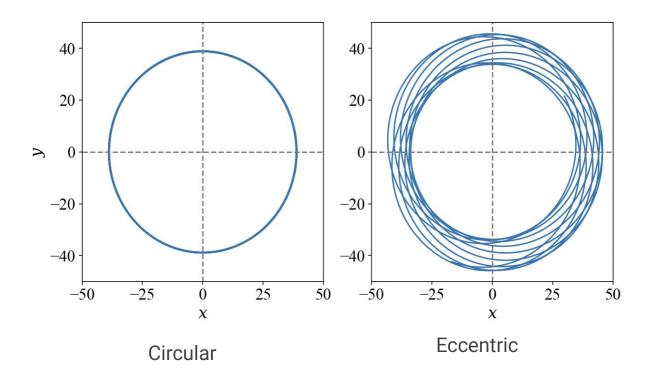
Kowalska et al. <u>arXiv:1010.0511</u>, Baibhav et al. <u>arXiv:1906.04197</u>


- Complex binary dynamics
 - Emitting GW at multiple harmonics
 - Longer signal
 - Generating waveform <u>expensive</u>

Complex binary dynamics: Emission at multiple harmonics


Turn on higher harmonics!


$$P_n \propto rac{n^4}{32} igg[\Big(J_{n-2}(ne) - 2eJ_{n-1}(ne) + rac{2}{n}J_n(ne) + 2eJ_{n+1}(ne) - J_{n+2}(ne) \Big)^2 + (1 - e^2) \left(J_n(ne)
ight)^2 igg] \ h_{+, imes}(t) = \sum_{n=1} A_n^{+, imes}(e) \cos(n\omega t + \phi_n)$$


Complex binary dynamics: Emission at multiple harmonics

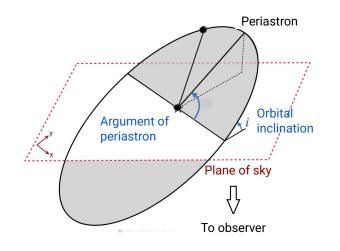
Stronger higher harmonics as eccentricity increases

Complex binary dynamics: Orbital precession

Eccentric binary dynamics

Dynamics in EFPE model:

$$\mathcal{D}y = \eta y^9 \sum_{n \geq 0} a_n y^n,$$


$$\mathcal{D}e^2 = -\eta y^8 \sum_{n\geq 0} b_n y^n,$$

$$\mathcal{D}\lambda = y^3$$
,

$$\mathcal{D}\delta\lambda = \frac{ky^3}{1+k}, \quad k = y^2 \sum_{n\geq 0} k_n y^n.$$

- PN expansion parameter $y=(M\omega)^{1/3}/\sqrt{(1-e^2)}$
- Orbital eccentricity e
- Mean orbital phase λ
- Argument of periastron $\delta \lambda$
- Differential operator

$$\mathcal{D}=M/(1-e^2)^{3/2}rac{d}{dt}$$

A. Klein et al. arXiv:1801.08542

A. Klein, arXiv:2106.10291

J. N. Arredondo et al, arXiv:2402.06804

Eccentric waveform in frequency domain

$$\tilde{h}_{+,\times}(f) = \underbrace{\sum_{i} \sqrt{2\pi} \, T_{i}^{\text{SPA}} \, e^{i\left(2\pi f t_{i}^{\text{SPA}} - \phi(t_{i}^{\text{SPA}}) - \pi/4\right)}}_{\text{Fourier modes}} \underbrace{\sum_{k=-k_{\text{max}}}^{k_{\text{max}}} a_{k,k_{\text{max}}} \, \mathcal{R}_{2,m_{i},n_{i}}^{+,\times} \left(t_{i}^{\text{SPA}} + k T_{i}^{\text{SPA}}\right)}_{\text{SUA correcttion to amplitude}}$$

$$\underbrace{\sum_{k=-k_{\max}}^{k_{\max}} a_{k,k_{\max}} \, \mathcal{R}^{+,\times}_{2,m_i,n_i} \left(t_i^{\text{SPA}} + kT_i^{\text{SPA}}\right)}_{\text{SUA correcttion to amplitude}}$$

$$\left. \frac{d\phi(t)}{dt} \right|_{t=t^{\text{SPA}}} = 2\pi f$$

$$T^{\text{SPA}} = \left| \frac{d^2 \phi(t)}{dt^2} \right|_{t=t^{\text{SPA}}}^{-1/2}$$

Effectively,
$$\tilde{h}(f) = \sum_{i} \tilde{h}_{i}(f)$$

SUA keeps the SPA's phase accuracy but adds a smarter treatment of the amplitude

Waveform generator package <u>pyEFPE</u> Morras et al. arXiv:2502.03929

Includes eccentricity and spin precession

Relative binning scheme for eccentric signal

$$\ln \mathcal{L}(\vec{\lambda}) = -\frac{1}{2} \langle d - h(\vec{\lambda}) | d - h(\vec{\lambda}) \rangle$$

$$\Rightarrow \ln \mathcal{L} = \langle d | h \rangle - \frac{1}{2} \langle h | h \rangle - \frac{1}{2} \langle d | d \rangle$$

Integral involves complex multiplication of $N = f_{max} x T$

→ Becomes expensive for long duration signal

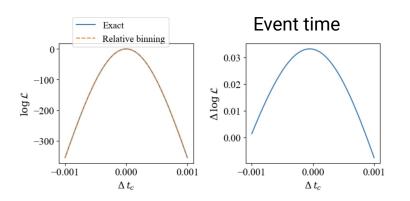
Relative binning scheme: approximate likelihood without recomputing the waveform at all frequencies

$$r(f) = \frac{h(f)}{h_0(f)} = r_0(h, b) + r_1(h, b) (f - f_c(b)) + \cdots$$

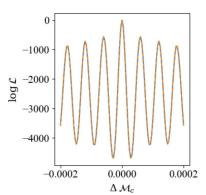
Must be slowly varying over frequency

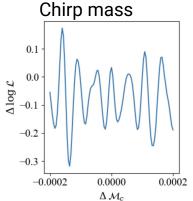
Previous studies: Zackay et al. arXiv:1806.08792 Krishna et al. arXiv:2312.06009

With higher-order modes: mode-by-mode treatment

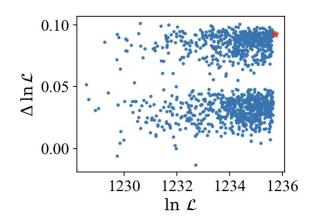

Leslie et al. arXiv:2109.09872 Narola et al. arXiv:2308.12140

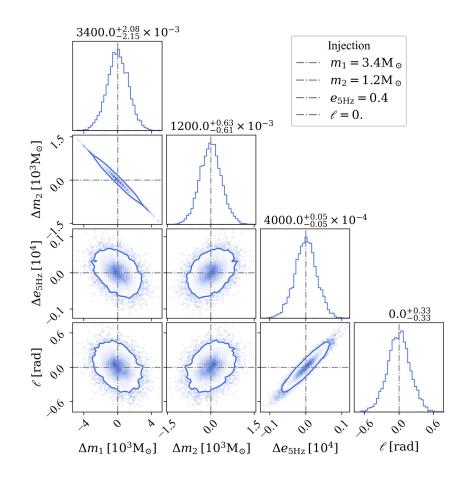

Apply mod-by-mode treatment for Fourier modes


$$\tilde{h}(f) = \sum_{i} \tilde{h}_{i}(f)$$


Accuracy of relative binning likelihood

Varying single parameter at a time





Results for NSBH injection

Eccentric NSBH injection with ET sensitivity

- Lower cutoff frequency 5 Hz, injection SNR ~50, Signal length 4096 sec
- Standard Bilby & Dynesty setup
 - ~ 3 day over 64 cpus
 - Standard PE will take > 100 days

Conclusion

- Develop relative binning scheme for eccentric waveform using the Fourier modes
- We can achieve substantial speedup for 3rd generation observatories
 - For BNS systems, improvement factor ~ 1000
 - Substantial for lower cutoff frequency 2 Hz

Thank you for listening!