4th Einstein Telescope Annual Meeting

11-14 November 2025 Opatija, Croatia

Contribution ID: 42 Type: poster

Metasurface-Bragg-Mirror-Stacks: A Pathway to Low-Noise, Ultra-Reflective End-Test Masses for the Einstein Telescope

The thermal noise of the end-test-mass mirrors in gravitational-wave detectors remains a major sensitivity limitation, largely due to the multi-layer Bragg-mirror-stacks required to achieve ultra-high reflectance. For the next-generation Einstein Telescope (ET), we propose a stacked-mirror approach that combines the complementary advantages of metasurfaces and Bragg mirrors, while mitigating their individual drawbacks. Our design integrates a super-polished silicon substrate coated with a Bragg-mirror-stack, an anti-resonant Fabry–Pérot spacer, and a structured amorphous-silicon metasurface layer on top.

While silicon is the target substrate foe ET mirrors, as a first experimental step, we are fabricating fused-silica test wafers with amorphous-silicon metasurfaces to assess robustness against fabrication-induced uncertainties. Reflection measurements will benchmark optical performance (reflectivity and noise), while numerical simulations based on rigorous coupled-wave analysis (RCWA), finite-element method (FEM), and finite-difference time-domain (FDTD) methods are used to predict fabrication tolerances and thermal-noise behavior in advance.

This hybrid concept offers for relevant substrate sizes a promising technology pathway toward mirrors with simultaneously extremely high reflectance and reduced thermal noise, paving the way for improved performance of ET end-test masses.

Author: KRANHOLD, Christian

 $\textbf{Co-authors:} \quad \text{GAEDTKE, Mika; Dr GOUR, Jeetendra (Friedrich Schiller University Jena); WALTHER, Markus; Dr EILENBERGER, Falk (Friedrich Schiller University Jena, Fraunhofer-Institut für Angewandte Optik und Feinmechanik (Friedrich Schiller University Jena)} \\$

IOF); KROKER, Stefanie; SIEFKE, Thomas

Presenter: SIEFKE, Thomas

Session Classification: Poster Session

Track Classification: ISB: Optics