# **OSB Summary**

Marica Branchesi, Archisman Ghosh, Michele Maggiore

ET Annual Meeting, Opatija Nov. 11-14, 2025



# some highlights:

- recap of the OSB Roadmap
- core PP program
- ESO expanding horizon call
- elB-OSB joint section
- contributed talks

# Reflections on the 'post-BB' phase of the OSB

#### A Roadmap for OSB activities

August 26, 2025

 Reflection started this Spring together with div coordinators

- presentations by div coordinators at Bologna Symposium
- identification of important problems/objectives/milestone for each division and concrete proposals for collaborations among divs
- OSB input to the 'core program'

The OSB Chairs: Marica Branchesi, Archisman Ghosh, Michele Maggiore

The OSB Division Coordinators: Michal Bejger, Laura Bernard, Monica Colpi, Elena Cuoco, Giulia Cusin, Tim Dietrich, Irina Dvorkin, Gabriele Franciolini, Giancarlo Ghirlanda, Gianluca Guidi, Ik Siong Heng, Tanja Hinderer, Andrew Levan, Marco Limongi, Michele Mancarella, Michela Mapelli, Andrea Maselli, Samaya Nissanke, Micaela Oertel, Cristiano Palomba, Paolo Pani, Harald Pfeiffer, Rafael Porto, Tania Regimbau, Angelo Ricciardone, Mairi Sakellariadou, Anuradha Samajdar, Bangalore Sathyaprakash, Patricia Schmidt, Riccardo Sturani. Nicola Tamanini

#### Abstract

This internal ET document presents the outcome of reflections started in the OSB after the completion of the "BlueBook", with the aim of identifying the most important scientific goals to be pursued by the OSB in the medium-term future (also as an OSB input to the definition of the ET Core Program), developing collaborative projects across divisions, and discussing the practical organization of the work.

#### Contents

| 1 | Div | . 1. Fundamental Physics                      |
|---|-----|-----------------------------------------------|
|   | 1.1 | Main scientific goals                         |
|   |     | 1.1.1 Goals specific to the division          |
|   |     | 1.1.2 Collaborative projects across divisions |
|   | 1.2 | Proposals for the organization of the work    |

an internal document has been finalized: ET-0422A-25 it will be a "Living document" (an Overleaf for updates has been set up)

# aims of the Roadmap:

- organizing the work of the divisions after the BlueBook
- OSB input to the Core Program
- a way for newcomers/people not yet much involved to find their way into ET activities. Do read it!

| Code        | Access | Title                              | Date       | Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|--------|------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ET-0422A-25 | ЕТ     | A Roadmap<br>for OSB<br>activities | 2025-09-15 | The OSB Chairs: Marica Branchesi, Archisman Ghosh, Michele Maggiore. The OSB Division Coordinators: Michal Bejger, Laura Bernard, Monica Colpi, Elena Cuoco, Giulia Cusin, Tim Dietrich, Irina Dvorkin, Gabriele Franciolini, Giancarlo Ghirlanda, Gianluca Guidi, Ik Siong Heng, Tanja Hinderer, Andrew Levan, Marco Limongi, Michele Mancarella, Michela Mapelli, Andrea Maselli, Samaya Nissanke, Micaela Oertel, Cristiano Palomba, Paolo Pani, Harald Pfeiffer, Rafael Porto, Tania Regimbau, Angelo Ricciardone, Mairi Sakellariadou, Anuradha Samajdar, Bangalore Sathyaprakash, Patricia Schmidt, Riccardo Sturani, Nicola Tamanini |

# various collaborative projects already scketched. some random examples:

#### 1.1.2 Collaborative projects across divisions

(In parenthesis people who volunteered to coordinate these projects from the  ${\it Div1}$  side  ${\it More help needed!}$ )

- Tests of GR and ET Mock Data Challenge (F. Crescimbeni)
- Connection with LISA Fund. Phys. Working Group (R. Brito, D. Doneva)
- With Div2: Strong field tests of theories for dark energy
- Connection with Div6: degeneracy with the NS EoS (F. J. Llanes-Estrada)
- $\bullet$  Other synergies to further develop: Pop (Div3), Waveform (Div8)

In particular, collaboration is foreseen with:

Division 1: for the configuration and analysis of signals that could reveal alternative theories beyond GR

Division 2: for the stochastic background (SBGW)

Division 3: for the choice of population models to use for injected signals

Division 4: for MDC with EM/neutrino detectors. Organization of low-latency MDC.

Division 5: for MDC with other GW detectors.

Divisions 6, 7, and 8: for the waveforms to inject, also considering different EOSs, and related DA developments.

Division 9: for the development of shared DA pipelines and tools.

# Find your way to contribute actively to ET!

#### 2.1.2 Collaborative projects across divisions

- Investigate how a joint detection of a stochastic background of GWs across different frequency bands (PTA, LISA, ET) could provide a better characterization of the properties and origin of such a background. Project in synergy with members from different collaborations (also together with Div. 5).
- Perform code validation among different available pipelines in order to provide more accurate and consistent forecast for standard sirens cosmology.



# ET core activity program for science and data analysis by Project Program Committee (PPC)

Marica Branchesi, Jerome Novak and Stefano Bagnasco members of the PPC as representative of the OSB and elB

For the OSB, the roadmap will be integrated into the core activity program.

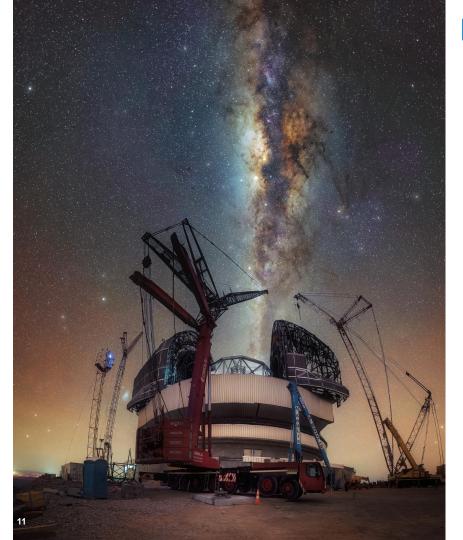
The program activities will be implemented in the structure of the ETMD

| Section | Items                                                                         |                                                 | Short description                                                                                                                              |
|---------|-------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Science Case                                                                  |                                                 | ,                                                                                                                                              |
|         | 1.1                                                                           | Fundamental Physics                             | Testing GR, probing compact object nature & horizon-scale physics, dark-matter candidates                                                      |
|         | 1.2                                                                           | Cosmology                                       | Stochastic and primordial GW backgrounds, early and late Universe cosmology, dark matter and LSS                                               |
|         | 1.3                                                                           | Population Studies                              | Population models of binary systems containing BH (primordial, stellar and intermediate) and NS, and population backgrounds.                   |
|         | 1.4                                                                           | Nuclear and Subatomic Physics                   | Equation of state and properties of matter at supranuclear densities (hot and cold), signatures of phase transitions in the QCD phase diagram. |
|         | 1.5                                                                           | Stellar Collapse and isolated Neutron Stars     | Core-collapse SN, single rotating NS, bursts and continuous wave signals, neutrino and electromagnetic counterparts                            |
|         | Science targets evaluation for the site selection and instrument optimization |                                                 |                                                                                                                                                |
|         | 2.2                                                                           | Site-dependent Target<br>Science (with the SCB) | Simulation and science metrics to characterize the site                                                                                        |
|         | 2.2                                                                           | Science targets (with ISB)                      | Simulation and science metrics to optimize the detector                                                                                        |



|     | lling and<br>inalysis                              |                                                                                                                                        |
|-----|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 3.1 | Waveforms deve                                     | Analytic and numeric approaches, waveform systematics and accuracy requirements, acceleration techniques                               |
| 3.2 | Data Analysis Do                                   | Algorithm development for detection and parameter estimation, machine learning, overlapping signals, null stream                       |
| 3.3 | Common Tools, comparison and                       | Development and maintainance of software fools, code review and                                                                        |
|     | Messenger<br>nulti-band<br>gies                    |                                                                                                                                        |
| 4.1 | Multi-messenge<br>of GW sources                    | Modelling of electromagnetic (GRB and KN) and neutrino counterparts of compact object mergers                                          |
| 4.2 | Synergies with<br>electromagnetic<br>Observatories | Requirements for space and ground EM observatories, observational strategy and data analysis optimization, GW/EM science perspectives. |
| 4.3 | Synergies with N<br>Observatories                  | Requirements for neutrino observatories, observational strategy and data analysis optimization, GW/neutrino science perspectives.      |
| 4.4 | Synergies with<br>ground-based a<br>space-born GW  | Development of science cases in synergy with ground-based and                                                                          |




| Mock Data<br>5Challenges        |                                             |                                                                                                                         |
|---------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 5.1                             | MDC Code development and injection models   | MDC code development, implementation and review                                                                         |
| 5.2                             | MDC infrastructure                          | Tools, services and infrastructure (middleware) specific to the management of MDCs                                      |
| 5.3                             | Data analysis improvements                  | MDC to identify data analysis challenges, and help developing data analysis code                                        |
| 5.4                             | Optimization of the                         | MDC to optimize the instruments                                                                                         |
| 5.5                             | Evaluation of computational needs           | Estimates of required computing power for each search. Also, test and evaluation of tools and infrastructure prototypes |
| Infrastructure requirements and |                                             |                                                                                                                         |
| 6development                    |                                             |                                                                                                                         |
| 6.1                             | Detection and Parameter Estimation          | Tools, services and infrastructure for management of offline data analysis activities                                   |
| 6.2                             | Low-Latency Infrastructure Requirements     | Tools, services and infrastructure for low-latency alert generation and management                                      |
| 6.3                             | Data and workload management infrastructure | Tools, services and infrastructure for data and job managemen accounting, databases, resource managers etc.             |







http://next.eso.org



# **ELT - Extremely Large Telescope**

Will be the largest optical/infrared telescope ever built or planned (mirror of 39.3 m diameter)

#### Construction 2015-2030

First Telescope Light: Mar 2029

First Scientific Light: Dec 2030









## What ESO's next programme could be

The next ESO Programme should be identified in line with ESO's vision and strategy. It should be a transformational facility in the 2040s landscape that enables scientific benefits in several areas and serves a large part of the scientific aspirations of the community.

#### It could be:

- A new telescope facility at an existing or new observatory site;
- A significant upgrade of an existing facility that is (co-)owned by ESO;
- Other ideas or combinations,

**Important:** ESO does not operate as a funding agency. The new facility will be **led and owned** by ESO **alone** or in **partnership** with other organisations.

## **Senior Science Committee (SSC)**



- Angela Adamo, University of Stockholm (ESO STC, Galaxies)
- Joss Bland-Hawthorn, University of Sydney (Astrophotonics)
- Marica Branchesi, Gran Sasso Science Institute (Multi-messenger)
- Paul Callanan, University College Cork (ESO Council, Compact objects, chair)
- Heather Cegla, University of Warwick (Life & Habitability)
- Stéphane Charlot, Institute d'Astrophysique de Paris (Cosmology)
- Vik Dhillon, University of Sheffield (ESO Council, Transients & stars)
- Norbert Hubin, formerly ESO (Technology Development, starting 1 Nov 2025)
- Marcella Marconi, INAF- Osservatorio Astronomico di Capodimonte (ESO STC, Stellar populations)
- Nanda Rea, Institut de Ciències de l'Espai CSIC (Transients & high-energy)
- Hans-Walter Rix, MPIA (Galaxies)
- Karin Öberg, Harvard (star/planet formation)





# Preparato ry phase

White papers

Call for ideas

Assessm ent phase

Decision

#### July 2024–Q3 2026

- Present and explain the process to the community
- Trigger dialogue about astronomy challenges & disruptive technologies in 2040s

#### Jun-Nov 2025

- Launch of call: July
- White papers due: 15 Dic 2025
- 3 pages max
- Science focus.

#### Q3 2026-Q2 2027

- Launch of call: Q3 2026
- Letters of Intent due
   1 Dec 2026
- Proposals due:1 Jun 2027

#### Q3 2027-Q3 2028

- Performed by SSC and ESO Executive
- Transparently share what ideas are being proposed at a dedicated community workshop

#### Q3-Q4 2028

- Presented at STC and Finance Committee
- Council decision
- Decision is **not** the start of the new Programme

#### Ē⇒⊤ () +

# Science & technology in the 2040s

The main focus at the moment

# What is/are the main science question(s) in astronomy that need to be answered in the 2040s?

Need to convince the member states to invest resources into the next major ESO facility. **Science** must be the driver. That science cannot be done with the facilities available in the 2030s.

#### White papers → workshops

The **SSC** decided to open a call for white papers focused purely on the **science questions to focus on for the 2040s**. This will then be a base to organise on-line workshop(s) where the scientific community should discuss which will be the scientific challenges of astronomy in the 2040s in different areas.

#### **Disruptive Technologies Workshops**

A place to discuss which potential disruptive technologies may become game changers for a transformational facility in the 2040s;



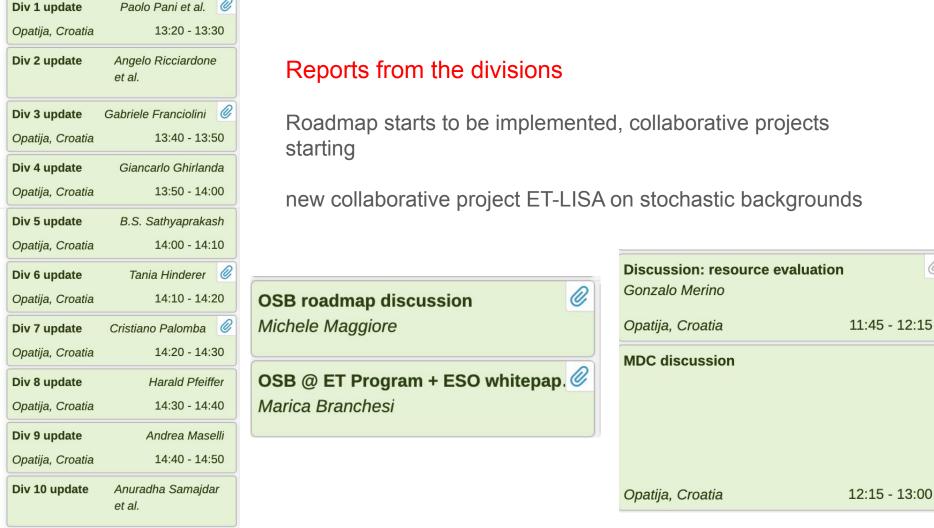


## Is ESO open to astroparticle experiments?

Yes, ESO remains open to considering astroparticle physics experiments when such initiatives are supported by the broader scientific community and demonstrate clear scientific value consistent with ESO's objectives.

#### For ET, this represents a significant opportunity

- ESO is an intergovernmental organization already managing and operating the most advanced astronomical infrastructures.
- ESO can offer a robust and solid **management frameworks**, providing extensive experience in **large-scale** scientific coordination, project governance, and long-term operational planning.
- ESO has a well-established framework for research, development, and innovation, enabling effective collaboration between scientific institutions and industry through consolidated consolidated processes in industrial contracting and procurement




## The OSB will answer to the ESO call with white papers

- We will prepare WPs highlighting the open scientific questions that only next-generation GW observatories will be able to address;
- Based on the Blue Book, we will produce 6 white papers (of 3 pages maximum) corresponding covering the broad scientific reach of ET, encompassing multiple research domains (including multi-messenger).

#### **Operatively:**

- Due to the strict deadline (**December 15**), the DIV coordinators may either work directly on their white paper or set up a small task force to assist.
- WPs should be written in a style accessible to a broad scientific audience. The Decadal Survey and Snowmass WPs provide good examples to follow.
- Authorship should reflect people most active in developing each Blue Book chapter, as well as any additional contributors who are helping now.



Paolo Pani et al.

# Highlights of updates from division coordinators

- Div 1: waveforms + data analysis, MDC for precision fundamental physics
- Div 2: synergistic project with LISA, plan for "cosmology day"
- Div 3: activity around 5 taskforces w/ O(10) contributors per taskforce
- Div 4: several missions and projects
- Div 5: collaborative project with LISA, discussion around decihertz synergies
- Div 6: dedicated science questions, synergies with other boards + CE STM
- Div 7: MM modelling CCSN, effects of CW on MDC
- Div 8: (long term) review, software-stack; (cross-div) repos, resources, liaisons
- Div 9: "common tools" open space for coordination across divisions
- Div 10: activity around new MDC tools, cross-div plans (e.g., with Div 1)

# ET computing needs @ elB+OSB joint session

- Detailed, global computing needs for ET are not yet fully defined. From eIB
  Div 3 (led by Gonzalo Merino), process initiated for gathering current and
  future computing requirements from the various ET scientific boards/divisions.
- Meeting held on the 20/06/2025 to kickstart this activity.
  - Representation from elB, SCB, ISB, OSB + OSB Div coordinators Divs 7-8-9-10
- Acknowledged that detailed computing needs are not yet fully defined.
- Agreed to create a "bottom-up" estimate of requirements.
  - Gather a first estimate for Nov ET meeting.
  - Produce a prioritized list of areas where R&D is expected.
    - how resource requirements could scale in the future
    - which types of sw & hw technologies are being explored as part of these R&D efforts.
  - Establish a formal process to track these requirements in the future.

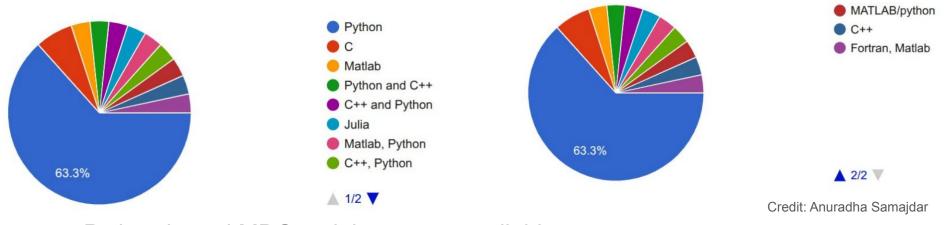
# ET computing needs @ elB+OSB joint session

#### Input received from different boards

- SCB + ISB: 3D seismic simulations → Newtonian noise modelling
  - o computationally expensive: massively parallel tasks that require HPC allocations
  - preliminary estimates (based on extrapolation of realistic runs)
    - 300 MCPUhrs for a CPU-only resource.
    - 50 MCPUhrs + 6.25 MGPUhrs (A100 equivalent) for a CPU+GPU resource (8 CPUcores/GPU).
  - R&D efforts ongoing to reduce these costs
  - detailed estimate expected in the next months
- OSB: Heavy and diverse needs
  - o long duration searches, waveform development, searches and parameter estimation
  - o input solicited via survey in OSB Divs 7-8-9-10: limited number of responses received
    - 500-100k CPU hrs (per responder), 1-2k GPU hrs (per responder)
    - 2-25 GB RAM (per responder), upto 4 TB of storage (per responder)
  - still need to move from raw data to integrated estimates

# ET computing needs @ elB+OSB joint session

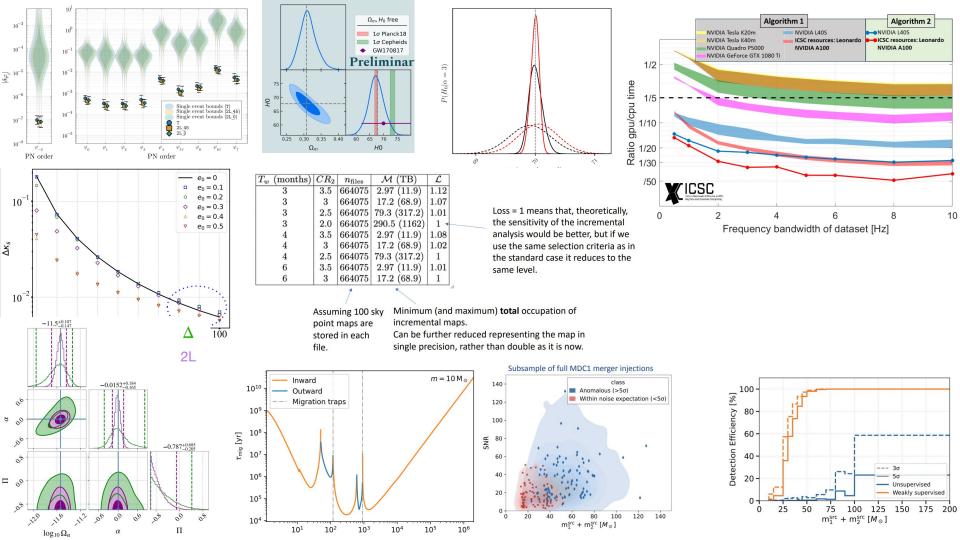
#### More general discussion

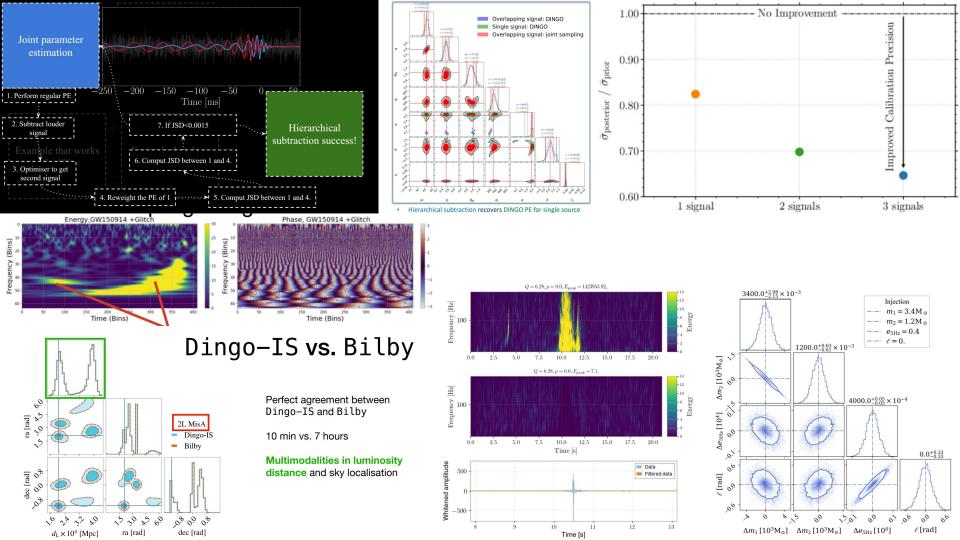

- Job schedulers: Slurm, HTCondor
- Containerization: Apptainter
- CI/CD integration
- Whether current IGWN environment sufficient for ET needs

### Summary

- clear trend: traditional CPU-based computing → GPU-based architectures
- well-supported, stable software environment is critical to ensure adoption of common tools and collaborative efficiency
- aim to avoid short-term solutions that are not sustainable
- Process has started: regular discussion expected (2×/y) stay tuned!

# MDC discussion @ elB+OSB joint session


Clear preference for Python as coding language




- Python-based MDC codebase now available
  - significant community engagement
  - o ability to deal generate glitches, overlapping signals, AI/ML-based CBC param inference
  - publicly available: <a href="https://gitlab.et-gw.eu/osb/div10/resources\_3G\_data\_analysis">https://gitlab.et-gw.eu/osb/div10/resources\_3G\_data\_analysis</a>
- Next steps: stress-testing and review; path forward jointly with elB

## contributed talks

Population Properties of Binary Black Holes... Fast and accurate parameter estimation of h Beyond GR tests with Einstein Telescope Andrea Begnoni Alessandro Trani Filippo Santoliquido Opatija, Croatia 15:50 - 16:10 Spin-induced quadrupole moment test for eccentric compac... Probing increasingly younger neutron stars @ Syed Nagvi Overlapping signals in next-generation grav Lorenzo Pierini Harsh Narola Detection prospects of parity-violating gravitational waves i. **Gravitational wave properties of the HESS** Hannah Duval J1731-347 Object as a Twin Compact Star Hierarchical Subtraction with Neural Density Dr David Alvarez Castillo Multi-probe Cosmology with Standard Sirens: a GWxHI Cros... Estimators as a General Solution to Matteo Schulz An incremental approach for all-sky searche **Overlapping Gravitational Wave Signals** for continuous gravitational wave signals Oian Hu From Astrophysics to Cosmology: forecasting Einstein Tele. Cristiano Palomba Giovanni Antinozzi Fast glitch removal method Edoardo Milotti Recent results on the high-energy emission from GRB jets Opatija, Croatia 15:00 - 15:20 Prof. Zelika Bosnjak Bayesian Calibration of Gravitational-Wave . @ Opatija, Croatia 10:20 - 10:40 Chun-Fung Wong QTAM: Qtransform from visualization to phy Test of a deep anomaly detection algorithm Francesco Sarandrea ... using MDC1 Fast likelihood evaluation of eccentric-prec... Dr Huw Haigh 11:30 - 11:45 Dr Soumen Roy Opatija, Croatia





# **Div1 Fundamental Physics: F2F meetings**

- Survey showed interest for focused F2F meetings, not connected to Annual Meetings or Symposia (e.g., avoiding teaching terms)
- ECR workshop organized by ECRs belonging to OSB, ISB, SCB



https://sites.google.com/view/et-ecr-workshop-2026-sapienza

#### SOC

- Francesco Crescimbeni
- Ulyana Dupletsa
- Francesco lacovelli
- Maria Antonietta Palaia
- Romeo Felice Rosato
- Michele Vacatello











