

EIB GENERAL INTRODUCTION

Stefano Bagnasco, INFN

ET 4th Annual Meeting | Opatija, HR

EINSTEIN Nov 12, 2025

E-INFRASTRUCTURE BOARD

- Most activity in the last months on the Computing Model deliverable (D8.2)
 - See next slides and Paul's summary
- MDC activity dwindled in the same timeframe
 - We have a dedicated discussion with OSB in next session
 - Discussion on the basics: C++ vs. Python
 - Will need to prepare guidelines and best practices adapted to the community
 - ...and plan for future MDCs
- Responded to a survey on the future of ESCAPE
 - Together with Virgo and EGO, see ET-0522A-25 or VIR-1074A-25
 - There should be an "OSCARS-2" call next year (stay tuned!)

TOWARDS THE COMPUTING MODEL

Thanks!

INFN Torino Lorenzo Asprea

Stefano Bagnasco INFN

Luciano Gaido INFN

Oliver Grabinski University of Geneva

Hemming EGO Gary

INFN Torino Lia Lavezzi

Paul Laycock Université de Genève

Federica Legger **INFN Turin**

Duncan Macleod Cardiff University

Barcelona

Oscar Reina Garcia Supercomputing

Center

Vallero INFN Torino Sara

...and several more writers and reviewers that contributed after the workshop!

ET Computing Model Writing Workshop

14-16 Oct 2025

Dipartimento di Fisica e INFN, Universita' di Torino

Q

Starts 14 Oct 2025, 14:00 Ends 16 Oct 2025, 13:00 Europe/Rome

Dipartimento di Fisica e INFN, Universita' di Torino Aula Wataghin

via Giuria 1, 10124, Torino

WHAT'S IN A COMPUTING MODEL

- The overall architecture of the e-Infrastructure, either as a single integrated system or as a few separate systems (e.g. instrument control and DAQ, low-latency, and offline)
- A documented way of evaluating the required computing power and storage space from the evolving scientific program of the collaboration
- Estimates of the involved costs and growth timelines
- A description of the data flows, with estimates for the needed network performances
- A description of the User Experience and workflows for relevant activities
- A description of the tools to be chosen or developed to provide all the required functionalities (foundation libraries, frameworks, middleware,...)
- Subsequent "Work Breakdown Structure" and "Implementation Plan" documents

THE COMPUTING MODEL AS D8.2

- The overall architecture of the e-Infrastructure, either as a single integrated system or as a few separate systems (e.g. instrument control and DAQ, low-latency, and offline) & a classification of resources according to latency
- A documented way of evaluating the required computing power and storage space from the evolving scientific program of the collaboration
- Estimates of the involved costs and growth timelines
- A description of the data flows, with estimates for the needed network performances
- A description of the User Experience and workflows for relevant activities
- A description of the teels to be chosen or developed to provide all the required functionalities (foundation libraries, frameworks, middleware,...) (and gaps!)
- Subsequent "Work Breakdown Structure" and "Implementation Plan" documents
- * A really extensive treatment of all FAIR and Open Science things > Later

NEARLY THERE...

Contents

Ι	Introduction			
1	Scope			
2	ET Science Goals			
3	Gra	avitational Wave Detection	19	
	3.1	Basic principle of GW detectors	19	
		3.1.1 Interferometers	19	
		3.1.2 Data Output	21	
	3.2	Analysis of gravitational wave signals	22	
		3.2.1 Gravitational wave events	22	
		3.2.2 Analysis methods	25	
	3.3	Gravitational Wave Alerts	28	
4 Computing Model Design Principles				
	4.1	FAIR Principles	32	
		4.1.1 A FAIR implementation for the Einstein Telescope	32	
		4.1.2 Beyond FAIR	34	
	4.2	Computing Tasks and Resource Classification	35	
		4.2.1 Onsite Computing	35	
		4.2.2 Offsite Computing	36	
	4.3 Software management		37	
		4.3.1 Software Best Practices and Metrics for Success	37	
		4.3.2 Organisational Principles	38	
		4.3.3 Critical Engineering Practices	38	
		4.3.4 Metrics to Track (DORA)	39	
		4.3.5 Release management	39	
П	C	Core Mission	41	
5		site Computing	42	
	5.1	DAQ	42	
		5.1.1 Main data streams	42	
		5.1.2 Supervisory control and data acquisition (SCADA) system	43	

0

	Calibration
	5.2.1 Expert operations
5.3	5.2.2 Conditions metadata
0.0	5.3.1 GW detector data format
6 Gra	avitational Wave Data Analysis
6.1	GW event database
6.2	GW event/alert format
6.3	Software framework
6.4	Initial observations
6.5	Event generation
6.6	Additional observations
6.7	Alert system
	6.7.1 Alert generation
6.8	External alert handling
7 Dis	tributed Computing
7.1	Data distribution
	7.1.1 Data archival
	7.1.2 Time-critical data streaming framework
	7.1.3 Distributed data management
7.2	Workload management
	7.2.1 Monitoring and accounting
	7.2.2 WMS gaps
7.3	Identity and Access Management
	7.3.1 Architecture and System Integration
	7.3.2 Security and Privacy Considerations
7.4	Network
	7.4.1 Network Monitoring and diagnostics
	7.4.2 IPv6 Statement
III (Offline Analysis
	laboration Analysis
8.1	
8.2	Analysis Capture System
8.3	e-infrastructure for the ET Collaboration
9 Op	en Science
9.1	Introduction
9.2	Data for Open Science
9.3	Open Science approach for the Einstein Telescope
	9.3.1 Infrastructure and Services
	9.3.1 Illifastructure and Services
	9.3.2 FAIR and Open Science support

IV Resource Estimates	10
10 ET Resource Estimates	79
10.1 Computing and data resource estimates	79
10.2 Computing and software personnel estimates	81
10.2 Companies and solution personner communes	-
11 Open Science Resource Estimates	82
11.1 Computing and data resource estimates	82
11.2 Computing and software personnel estimates	82
V Sustainability	83
12 Sustainable Computing Resource Usage	84
12.1 Estimating computing power consumption	84
12.2 Promoting sustainable computing practices	85
12.3 Software engineering and eliminating waste	87
13 Training of the next generation of experts	88
13.1 HTC and HPC Computing Training	88
13.2 Software Engineering and Data Management Skills	89
13.3 Artificial Intelligence and Machine Learning	89
13.4 Education and University Integration	89
13.5 Career Development	90
13.6 Outreach, Dissemination, and Sustainability	90
14 Technology tracking and Cooperation with Industry	91
14 Technology tracking and Cooperation with industry	91
VI Executive Summary	92
VI Executive Summary	32
Appendices	94
A e-Infrastructure	95
A.1 User support	95
A.1.1 Support Infrastructure and Service Delivery	95
A.1.2 User Onboarding and Training Support	97
A.1.3 Documentation and Self-Service Resources	97
A.1.4 Monitoring and Continuous Improvement	98
A.2 Collaborative services	98
A.2.1 Communication Infrastructure	98
A.2.2 Document Collaboration and Knowledge Management	100
A.2.3 Scientific Software Collaboration	101
A.2.4 Websites	102
A.2.5 Voting and Elections	103
A 2.6 Management of the Collaboration - Project Management	104

4

TOWARDS A QUANTITATIVE COMPUTING MODEL

- Remember the "scary slide" from last Symposium?
- We still have no real estimate of the required computing power
 - Trivial scaling gives unphysical results
 - We all know that we can manage through better algorithms and mitigation strategies
- But we need to show the funding agencies that we'll not bust because of computing!
- So, we need a well-defined plan of MDCs
 - Also for tesying the infrastructure
 - Including, sooner than later, "low-latency" end-to-end MDCs

ET-PP WP8 STATUS

ET-PP WP8 & EiB Roadmap / Activities

4th ET Annual Meeting

Opatija, Croatia / 11th-14th November 2025

Deliverables

D8.1 Computing and Data requirements

Re-submitted 15-09-2025 EC Approved **D8.2 Computing and Data model** EC Due date: February 2026

Internal due date: End 2025

Currently In preparation

D8.3 Data access policy implementation guidelines

EC Due date: August 2026 Internal due date: May/June 2025

Milestones

M8.3 On site infrastructure, computing and data model Jun 30 - Jul 01

M8.4 Low-latency and offline workflows

Due date: Dec 2025

M8.5 Data management access policy implementation

Due date: July 2026

- 1. Writing writing writing & editing D8.2 Computing model. See https://indico.ego-gw.it/event/916/contributions/9095/
- 2. OSCARS projects: See https://indico.ego-gw.it/event/916/contributions/9096/

Activities

- MADDEN: Rucio data lake, testing ET data lake + mock CE data lake.
- ETAP: Virtual Research Environment for ET, like CERN/ESCAPE-VRE.
- 3. Code support to MDC OSB Div10

ongoing (C++ recoding proposal), sharing best practices for software FAIR writing and management

4. Data & Metadata Glossary controlled vocabulary to be prepared for D8.3 Data access policy implementation guidelines

Fundamental to define Metadata schema and data model:

- for ET real and simulated data (MDC)
- Because [LVK] Gravitational Wave detectors analyze their data together"
- 5. Others: Collaboration with WP7 for workshop for industry engagement (computing session)

DIV1: SOFTWARE, FRAMEWORKS, AND DATA CHALLENGE SUPPORT

EIB Division 1 activities

- MDC support: input data distribution
 - Currently using OSDF + CVMFS infrastructure from OSG (same system as in LVK, but without authentication)

For more information, see presentations at previous ET symposiums and annual meetings

- Distributed Data Management (DDM) with Rucio
 - Envisioning ET's future DDM system ET Rucio Data Lake inspired on ESCAPE
 - Expect to have a usable prototype available for MDC2

For more information, see next presentation on MADDEN & ETAP projects

- Virtual Research Environment (VRE)
 - Installing a VRE for ET in Geneva, will help us to estimate computing resources needed
 - VRE will connect to the ET Rucio Data Lake
 - Expect to have a usable prototype available for MDC2

For more information, see next presentation on MADDEN & ETAP projects

- Workflow management tools
 - Evaluating different workflow management tools (Snakemake, Pegasus, Nextflow)
- Rewriting of MDC data generation code used by OSB div10
 - Rewritting was done in C++, project in stand-by (or abandonned?)

DIV2: SERVICES AND COLLABORATION SUPPORT

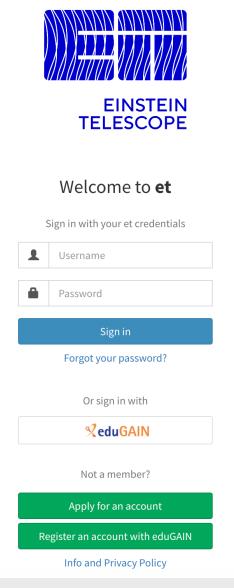
Federated Authentication via INDIGO IAM + eduGAIN

- Members authenticate using home institution credentials
- OpenID Connect (OIDC) tokens for single sign-on across ET services

• Core Architecture

- INDIGO IAM: Authentication provider & token issuer
- ET Member Database (ETMD): Authoritative membership records (SoT)
- SCIM: Automated synchronisation between systems

Key Capabilities


- Pre-provisioning workflows with RU leader oversight
- Secure activation via time-limited tokens (72h validity)
- Complete lifecycle management (onboarding -> active -> departure)
- Research unit affiliation tracking with full history
- Automated nightly reconciliation ensuring consistency

Security & Privacy

- GDPR-compliant data minimisation (minimal PII in tokens)
- Comprehensive audit logging for all operations
- Never delete member records (historical integrity)

DIV2: SERVICES AND COLLABORATION SUPPORT

- Current state of implementation:
 - INDIGO IAM pre-production instance ready at CNAF;
 - INDIGO IAM test instance in use at EGO;
 - ETMD integration on-going.

Fuller details available here:

https://apps.et-gw.eu/tds/ql/?c=18244

DIV3: COMPUTING AND DATA MODEL, RESOURCE ESTIMATION

Div3: Computing and data model, Resource Estimation

Most of the activity related to the documents (ET-PP deliverables) D8.1 and D8.2, led by Paul Laycock

- D8.1 Computing and Data Requirements
 - New version submitted including amendments to the comments from EC review (v1.4, Sep 9th)
- D8.2 Computing and Data Model (detailed report today)
 - Writing workshop in Turin 14-16 Oct. Document draft delivered to the expert review team.

Aiming to start a process to track computing needs from the evolving scientific program of the collaboration.

- Had a kick-off meeting in June, with ISB, SCB and OSB representatives.
- First iteration of resource needs gathering during this meeting (EIB/OSB session).

Work by Georgy Skorobogatov on writing a GW workload to benchmark GPUs within HEPScore framework is stalled.

- Work for integrating RIFT as a HEPScore workload has been done.
- Missing "science" discussion with RIFT expert: revise the parameters that are currently used/hardcoded in the RIFT run and tune them to be more representative of a potential use case for ET.

1

DIV4: MULTIMESSENGER ALERTS AND LOW-LATENCY INFRASTRUCTURE

Division 4 summary

- Div4: multi-messenger alert infrastructure
- Computing requirements document (ET-PP D8.1)
 - Added multi-messenger computing requirements in February 2025
 - Naive scaling implies very significant requirements: requires significant algorithmic speedups
 - Lots of potential with machine learning / similar shown in the Blue Book, now must evaluate full workflow
- Hosted a multi-messenger / low-latency workshop in Geneva on May 21 and 22
 - Very productive discussion, leading to a preliminary computing model
 - Agreed there that "low-latency" is a confusing name for the topic; there are a mixture of latencies
 - Revised computing model nomenclature, multi-messenger falls under "time- and mission-critical" infrastructure
 - Followed up at the ET symposium on May 27 (joint EIB/OSB session) and 30 (plenary overview)
 - Lots of discussion, which has helped to reinforce the scale of the task ahead of us
- ET computing and data model document (ET-PP D8.2)
 - Multi-messenger alert infrastructure is one of the key contributions to the ET computing model
 - Need to prepare for future of multi-messenger infrastructure, not necessarily what we are familiar with today
 - Gathered all of the inputs received and requirements raised, combined into a first-draft model
- Important to emphasise that all of this work is joint between ET EIB and ET-PP WP8
 - Very much appreciate the ongoing close collaboration relating to preparations for ET computing

2

WORKSHOP TOPICS:

- Al-enabled algorithms, tools and approaches for data analysis
- Al tools for software development and more
- Evolution of processor architectures (accelerators, stream processors, neuromorphic...) incl.
 Quantum
- Storage and data management technologies
- Network technologies and cybersecurity
- Infrastructure and sustainability

This Workshop is being organized by **ET-EIB and ET-PP WP8**, in collaboration with **WP7**

THANKS!

