Report about rucio-fs tests

N. Avdeev
September 19, 2025

1 Introduction

RucioFS is a FUSE-based filesystem interface for the Rucio data management system. It allows users
to access and interact with datasets stored in Rucio as if they were part of a local filesystem. By
providing a familiar POSIX-like interface, RucioFS facilitates data analysis.
At the current stage, RucioF'S is only a prototype. The main objective of this work was to test the
application, since further development requires a clear understanding of its strengths and limitations.
In this study, we evaluated the performance of the 1s command for both single and multiple users.
We also conducted brief tests with the cat and cp commands.

2 Evaluation of the lIs command for a single user

2.1 Objective

The objective is to estimate the execution time of the Is command in two scenarios: with the caching
system enabled and with it disabled.

2.2 Methodology

We measured the execution time of the 1s command for the following numbers of files: 500, 1,000,
5,000, 10,000, and 50,000. Each file had a size of 4 KB. The files were created by a simple Bash script
and contained only the file number. To measure the execution time of the s command, we used the
time Bash command. For each file count, 100 independent measurements were performed.

2.3 Results

The results of this test are presented in Figure 1. As can be seen, even with 50,000 files, the execution
time remains relatively low when the caching system is enabled.

In contrast, when caching is disabled, the execution time is significantly higher. This case corre-
sponds to the situation when a user opens a directory for the first time.

3 Evaluation of the Is command for multiple users

3.1 Objective

The objective is to estimate the execution time of the 1s command executed simultaneously by multiple
users in two scenarios: with the caching system enabled and with it disabled.

3.2 Methodology

We measured the execution time of the Is command for 10,000 files, with each user executing the
command simultaneously. To measure execution time, we used the same time Bash command as in
the previous test. It should be noted that by “users” we mean separate containers running on the
same machine as the server. Therefore, in a real scenario, where actual users run Is for the first time
simultaneously (similar to the case with caching disabled), the execution time might be longer.



Graph with error bars

12 4 # without cache
- with cache

10 A

time, sec
(=]
|

T
10° 10%
Number of files

Figure 1: This graph corresponds execution time of 1s for different file counts for case with and without
cache

Graph with error bars

4 without cache
10 1 -4 with cache

time, sec

2 4 6 8 10
Number of users

Figure 2: This graph corresponds execution time of ls for 10000 files, which run by many users
simultaneously for case with and without cache

3.3 Results

The results of this test are presented in Figure 2. As can be seen, with caching enabled the execution
time remains low regardless of the number of users. This result is expected, since in this case the users
interact only with the cache.

In contrast, when caching is disabled, the execution time increases with the number of users. We
attribute this effect to the increasing number of requests sent to the server. It should also be noted
that the variance in execution times for multiple users is large, as the number of concurrent requests to
the server may differ, given that it is practically impossible to run the command truly simultaneously.
This scenario corresponds to the case when many users run ls for the first time at the same moment.

From these results, it can be concluded that there is no significant issue when a small number of
users execute the command simultaneously. However, the situation may become problematic when
100 or more users attempt to run the command for the first time at the same time.



4 Brief tests of cat and cp

4.1 Test of the cat command

There is no strong motivation to use the cat command for gravitational wave data files. Therefore,
for more meaningful and precise testing, it is necessary to determine what types of files should be read
with the cat command in Rucio.

For small .txt files (approximately 80 rows), the average execution time of the cat command was
2.2 seconds when run for the first time (without caching) and 0.02 seconds for subsequent runs (with
caching).

4.2 Test of the cp command

This command serves as a simple analogue of the rucio download functionality in RucioFS. However,
at the current stage it does not perform well with large files. For example, when copying a 4.2 GB raw
Virgo file, only 205 MB of the file could be transferred. Therefore, at present, there is no practical
reason to use this command for large data files.

5 Conclusion

At present, the performance of the Is command is generally satisfactory. Only in extreme situations
could performance become problematic, such as when handling hundreds of thousands of files in a
single directory or hundreds of first-time simultaneous requests.
For testing the cat command, it is necessary to determine which types of files should be read.
The cp command does not perform reliably at this stage; therefore, there is no strong justification
for conducting detailed performance tests for this command.



	Introduction
	Evaluation of the ls command for a single user
	Objective
	Methodology
	Results

	Evaluation of the ls command for multiple users
	Objective
	Methodology
	Results

	Brief tests of cat and cp
	Test of the cat command
	Test of the cp command

	Conclusion

