Conveners
ISB: Optical Layout / Detector Layout
- Anna Green (Nikhef)
- Jerome Degallaix (Laboratoire des Matéraux Avancés)
ISB: Controls / Electronics
- Bas Swinkels (Nikhef)
- Loic Rolland (LAPP)
ISB: Contributed Talks
- Jan Harms
- Stefan Hild
ISB: Contributed Talks
- Stefan Hild
- Jan Harms
ISB: Contributed Talks
- Stefan Hild
- Jan Harms
ISB: Spare
- Jan Harms
- Stefan Hild
ISB: Optical Layout / Detector Layout
- Anna Green (Nikhef)
- Jerome Degallaix (Laboratoire des Matéraux Avancés)
ISB: Integrated LF Tower Design
- Steffen Grohmann (KIT)
ISB: ISB discussions
- Jan Harms
- Stefan Hild
ISB: HF Suspension Requirements
- Stefan Hild
ISB: Infra Interface Discussion
- Stefan Hild
- Jan Harms
ISB: Integrated LF Tower Design
- Steffen Grohmann (KIT)
E-TEST (Einstein Telescope Euregio-Meuse-Rhine Site and Technology) was a project funded by the European program Ineterreg Euregio Meuse-Rhine. One of the goals of the E-TEST project was to develop a prototype whose suspended payload would be cooled radiatively, i.e. without contact, to cryogenic temperature below 25K.
The prototype architecture relies on an active platform providing...
In order to achieve the demanding vacuum conditions in ET-LF around the cryogenic mirror, extensive TPMC simulations with the in-house code ProVac3D have been performed to find an appropriate concept of cryopumps. Herewith, it was distinguished between light gases like hydrogen and heavy gases like water. Since the gas flows to be managed as well as the requirements are strongly different, the...
The Einstein Telescope, low-frequency interferometers (ET-LF) will extend the detection band for gravitational-waves down to 3Hz [1]. Reaching these low-frequency sensitivities requires orders-of-magnitude improvements beyond the designs of second generation observatories, advanced LIGO [2] and Advanced Virgo [3]. Experience with these existing detectors has shown that they have been limited...
This talk is focusing on elements of "tower vacuum" systems that are critical for interfacing with civil infrastructure, in line with the current activities of ET.
Solutions are provided for the access mode (bottom/lateral) of "towers", for the size of extra rooms for auxiliaries and maintenance equipment, and about typical spaces requirements around main chambers. We will address the...
To achieve its ambitious scientific goals [1], the Low-Frequency Einstein Telescope observatory aims for orders-of-magnitude reduction in residual strain noise between 3-10 Hz compared to current detectors. Many noises affecting the 3-10 Hz band are driven by ground vibration and the resulting residual motion of the interferometer optics. These noises have been a challenge to deal with in...
The Institute for Gravitational Research Einstein Telescope research unit at the University of Glasgow is actively investigating many topics of instrument science related to the Einstein Telescope. We are working towards experimental demonstrations and proof of concept demonstrations of suspensions systems for the high and low frequency detectors, substrate and coatings characterisation and...
We present an updated estimation of the noise induced by scattered light inside the main arms of the Einstein Telescope (ET) gravitational wave detector. Both ET configurations for high- and low-frequency interferometers are considered, for which we propose baffle layouts and designs. The noise estimations are done using both numerical tools and analytical formulas. For the baseline...
Dust particles present inside the Einstein Telescope vacuum pipes can be a possible source of scattered light. It is therefore important to accurately model the light-dust interaction mechanisms and the noise they can generate, so as to be able to put constraints on the maximum allowed population of particles in the vacuum pipes. It is also important to identify the processes/events that may...
Newtonian noise significantly impacts the Einstein Telescope’s low-frequency performance. To address this, one approach is to use large sensor arrays to capture the seismic field, estimate test mass acceleration, and subsequently adjust the gravitational wave data during post-processing. Fiber sensors are becoming a practical technology to the challenges of large seismic sensor networks...
Quantum noise poses a fundamental limitation to the sensitivity of second-generation terrestrial gravitational wave detectors,affecting both low and high frequencies through radiation pressure noise and shot noise, respectively. Overcoming this challenge is crucial for advancing to third-generation detectors such as the Einstein Telescope.
Since the third observation run (O3), both LIGO and...
At the Physics Dept. and INFN section of Ferrara, Italy, we have two working sensitive polarimeters dedicated to measuring the birefringence 2D map of substrate samples, 2D map of the static birefringence of reflective coatings and birefringence noise of high reflectivity mirror coatings. One will be dedicated to static birefringence measurements (substrates and reflective coatings) and the...
In this presentation, the progress towards the realisation of crystalline oxide mirror coatings is reviewed.
Cr2O3 films on Al2O3 is our initial crystalline oxide model system where the relationship between the structural, optical and mechanical properties is investigated. Specifically the role of a lattice mismatch of about 5% on these properties will be reported.
In a second part, the...
The standard post-deposition treatment on amorphous tantala (Ta2O5) mirror coatings consists in a 10 hours thermal annealing at 500°C temperature. This procedure reduces internal strains, thus lowering the coating loss angle. The coating remains amorphous during this procedure, which makes it optically homogeneous.
Treating the samples at higher temperatures and/or for longer annealing times...
A key technology to achieve the exquiste low-frequency sensitivity of the Einstein Telescope is to reduce the noise of local displacement sensors in the test mass suspension chains. We are developing a sensing infrastrcuture for this purpose based on the interferometer technique Deep Frequency Modulation Interferometry (DFMI) that enables us to realize compact sensors that can provide...
The development of the Superattenuator, over years of dedicated research and development by the National Institute for Nuclear Physics (INFN) in Pisa, has played a pivotal role in enabling the detection of gravitational waves signals down to an unprecedented 10 Hz frequency.
In fact, the Superattenuator, acting as a cascade of low-pass filters, has been a fundamental tool for the VIRGO...
The CAOS (Center for Applications on Gravitational Waves and Seismology) laboratory is going to be constructed in Perugia in the coming years. It will serve as an international facility where two full-scale ET suspensions will be built. Additionally, a Fabry-Perot cavity will be realized to facilitate various studies on the different noise sources characteristic of third-generation...