Data management and storage is of paramount importance in experimental activities to track progress, ensure accuracy and reproducibility of the results. Relational databases offer a reliable solution for keeping track of large amounts of data, media and information related to any components and tools which are present in a physics laboratory. In this talk, we present the database...
The next generation of gravitational wave detectors is confronted with intricate challenges, highlighting the need for state-of-the-art simulation tools tailored to these emerging complexities. Many of these challenges cannot be accurately modeled with existing frequency-domain tools due to their non-linearities and therefore need to instead be modeled in the time domain. This work develops a...
New scientific innovations are currently being studied for improving the seismic isolation of the Einstein Telescope over second generation gravitational wave detectors. Especially in the area of displacement and inertial sensors, a lot of progress has been made within the last decades. Here, we will present our concept of a compact fiber-based displacement sensor, consisting of a heterodyne...
The AiLoV-ET project seeks to advance optical systems to enhance the performance and quality of the Einstein Telescope (ET) optics. Two primary challenges impacting interferometer sensitivity are high-reflectivity coatings, contributing to thermal noise, and optical aberrations, affecting high-power operation essential for reducing quantum noise. The laboratory at the University of Roma Tor...
The Rasnik is originally a 3-point alignment system under continuous development since 1993 where it was first used to align the muon chambers of the ATLAS experiment at CERN.
A light source illuminates a special mask which is projected on a CMOS sensor using an objective/lens. This image of the mask is analyzed to calculate the absolute position. This allows us to find displacements on the...
The design sensitivity of future gravitational-wave detectors like Einstein Telescope is fundamentally limited by quantum noise over a wide frequency range. Speedmeters can overcome this semi-classical sensitivity limit, because they probe a quantum non-demolition observable. Polarisation-based speedmeters are a class of speedmeters that do not require large infrastructure changes compared to...
The Einstein Telescope requires about 120 km of vacuum tubes with a diameter of 1 m to achieve the design sensitivity and reduce scattered light.
The pressure inside the tubes needs to be below 10$^{-11}$ mbar to minimize the residual gas noise.
The current baseline concept of the vacuum system foresees passive sections welded together from stainless steel and connected to pumping...
Third-generation gravitational wave detectors like the Einstein Telescope and Cosmic Explorer will have better sensitivity than current ones. The triangular setup is proposed to have three detectors forming an equilateral triangle. Although whether the Einstein Telescope should follow an L-shape or triangular topology has arisen from time to time. Choosing between them is crucial for...
The poster aims to present highly sensitive inertial sensors developed for future gravitational-wave detectors. E-TEST (Einstein Telescope Euregio Meuse-Rhine Site & Technology)[1,2] is an international collaboration that consists of a prototype suspension combining passive and active isolation techniques for a 100 kg silicon mirror cooled down radiatively to 25 K in a suspended cryostat. It...
The INFN-Bologna group with interests in the ISB activities is kin on DAQ (electronics and online software) and time synchronization with the White Rabbit technology. We have consolidated our expertises through decades of work in High Energy Particle and Astroparticle Physics experiments at LHC and underwater neutrino telescopes. In this contribution we will present our assets that could be...
Mitigation techniques for Newtonian noise are essential due to the increasing sensitivity of future earth-based gravitational wave detectors. We are exploring deep learning as a model-independent technique to predict seismic-induced variations of the interferometer strain. Compared to conventional Wiener filters, convolutional neural networks can learn to distinguish a multiplicity of patterns...
As straylight is a dominating limitation for the sensitivity of gravitational wave detectors, we investigate new laser operation concepts and interferometer topologies for a more straylight-resilient detector configuration.
Our main focus is the use of tunable coherence realized by phase modulation following a pseudo-random-sequence on the interferometer laser.
This breaks the coherence of...
Gravitational wave detectors, such as the Einstein Telescope (ET), rely on optimized cryogenics suspension systems to enhance detection sensitivity. In this study, we address the optimization of crystalline silicon triangular blades within the ET's cryogenics suspension system. Our purpose is to reduce the natural frequency while maintaining surface tensile stress below 90 MPa, crucial for...
Cryogenic operation of ET-LF is imperative for exploiting the full scientific potential of ET, with test masses operated at temperatures of 10 K to 20 K in order to suppress the suspension thermal noise to the level of Newtonian noise. Moreover, large cryopumps are required to uphold sufficient vacuum quality in both ET-LF and ET-HF.
A concept for a helium-based cryogenic infrastructure...
Core-collapse supernovae are one of the most anticipated gravitational wave sources in the frequency band of the Einstein Telescope (ET). A detection of such an event can provide crucial information on the processes occurring during the final stages of massive stars and open perspectives in multi-messenger astronomy. Compared to current detectors, capable of measuring supernovae within a...
"The sensitivity goal of the Einstein Telescope is to achieve a minimum of tenfold improvement over second-generation interferometers, transitioning from Z=2 to Z=100. Attaining this precision requires meticulous attention to parameter specifications for the Test Masses.Beam distortions and light scattering significantly influence signal quality, requiring detailed information on surface...
A new underground facility is under construction at the National Laboratories of Gran Sasso for the development of a vibration sensing and control system of two suspended mechanical platforms. In this poster, we will present the goals of this experiment and provide an update on the status of the project.
A new facility at INFN and University of Padova to measure light-scattering properties of surfaces and materials of interest for ET is described. Our system can measure the Bidirectional Scattering Distribution Function (BSDF) and Total Integrated Scattering at 532 nm and 1064 nm, with a plan to upgrade at 1550 nm in the near future. The BSDF noise floor is below 10-8/sr in the whole angular...
In this era of multi-messenger astronomy, we have been able to detect common sources of gravitational waves (GW) and photons. However, there is still a missing correlation between GW and neutrino sources. The scenarios involving binary mergers have been particularly favoured for a long time. However, no evidence has been found yet. The aim of our research is to contribute to this aspect. We...
One of the goals of the Einstein Telescope is to improve the sensitivity at low frequencies. This target enables us to look gravitational waves carrying information from the early Universe, extend the time observation of binary system of compact objects, and enhancing the signal-to-noise ratio for spinning neutron stars and stochastic background.
The Einstein Telescope aims at reaching a...
In the GEO600, the beam splitter (BS) experiences a strong thermal lensing effect due to the high power build-up in the Power Recycling Cavity (PRC) combined with a tiny beam waist. This leads to the conversion of the fundamental mode into higher order modes (HOMs), which negatively impacts the detector performance. To overcome this problem, GEO 600 is equipped with a Thermal Compensation...
ET's ambitious targets for low-frequency sensitivity require outstanding performance from its seismic isolation. A vital element of this will be the inertial sensors used to monitor ground motion and inform active control isolation schemes. Current inertial sensors used in LIGO are bulky, not vacuum-compatible, and unsuitable for cryogenic environments. Therefore, we aim to design inertial...
The talk aims to present the design and performance of high-resolution inertial sensors/accelerometers. The sensors are built around a novel interferometric readout technique, allowing to reach sub-pm resolution. These sensors have been employed in the E-TEST project, which have been demonstrating, amongst others, a novel active-passive strategy for isolating the test-mass of the ET. They have...
In the upcoming third generation of gravitational wave (GW) detectors, electrostatic charging, and the build-up of a frost layer on cryogenically cooled mirrors may represent two potentially critical showstoppers for GW detection. Here we approach a possible mitigation solution for both such apparently uncorrelated issues, relying on optics irradiation with low energy electrons (few hundreds...
One of the most critical parts of gravitational wave interferometers are their mirror test masses as coating thermal noise is one of the main limiting factors of the instrumental sensitivity in the frequency band from 20 to 2000 Hz.
Our research work is driven by the aim to study the thermal noise of the highly reflective mirror coatings, indeed new generation gravitational waves detectors,...
Laser beams of the Einstein Telescope (ET) are currently planned to be contained in a 120 km-long 1 m-diameter ultra-high vacuum pipeline, which intends to become the largest ultra-high vacuum system ever built. Traditionally, austenitic stainless steel is used for such pipelines, but given the scale of the project, alternative materials must be considered to reduce the cost. Ferritic...
Back-scatter light is one of the main technical limitations on the sensitivity of the detectors. Minimizing it requires significant effort in optimizing surfaces, implementing baffles and other advanced instrumentation techniques. As the last line of defense, the dual homodyne readout was proposed to sense and subtract the noise introduced by back-scattered light. However, till now this...
The experience gained during the commissioning of Advanced Virgo (AdV) has clearly highlighted the necessity of monitoring and controlling optical aberrations in a gravitational wave interferometric detector. The Thermal Compensation system (TCS), designed to detect and compensate aberrations caused by limits in the optics production process or laser power absorption in coatings, has made...
The mechanical transfer function of the ET towers basement plays a crucial role on the response of the Super-Attenuator (SA), on the stability of the ET suspension and in general on the low frequency performance of ET. For this reason, it is of pivotal importance to investigate the behavior of the ET tower – basement system with a Finite Element modelling technique. Particular emphasis has...
In the framework of the SAR-GRAV and FdS-2021 projects, new investigations in the area comprised within the potential vertexes (Bitti-Lula-Mamone) limiting the ET triangle have been performed with the aim to assess the geological, structural and neotectonic, and hydrogeological conditions. For this purpose, we adopted a multidisciplinary approach involving detailed structural, geological and...
Preserving the cleanliness of the main optics during installation and maintenance in the tower is a critical objective in ET. This requirement has an impact on the design of the clean air injection paths, which should aim to minimize the contamination induced by the operator working in the tower and prevent the transport of contaminating particles from unclean areas to the critical optical...
Drawing upon insights from the VIRGO project, this study focuses on the development of an advanced Real-Time Control System (RCS) tailored for the precise feedback control of suspended optical devices and seismic isolation systems. We provide an overview of the project's status, highlighting the use of standard communication protocols, Field-Programmable Gate Arrays (FPGAs), and Digital Signal...
The current error signal for the SRC length control, based on the frontal modulation scheme, is sub-optimal for a detuned operation of the interferometer. At the GEO600 detector, we tested a new SRC locking technique that is more suitable for transitioning the detector to a detuned state. The new technique is based on detecting changes in the SRC length by injecting an auxiliary sub-carrier...
The low-frequency component of the Einstein telescope is expected to be limited by contributions of seismic, Newtonian and radiation pressure noise. In order to further increase the astrophysical range at these low frequencies, it is essential that all three of these noise sources are reduced simultaneously. This means that, if seismic and Newtonian noise levels see sufficient improvement, one...
The Einstein Telescope (ET) is a third generation gravitational wave detector planned in Europe, combining a low-frequency (LF) and a high-frequency (HF) laser interferometer. Cryogenic operation of ET-LF in the temperature range of 10 K to 20 K is essential to suppress the suspension thermal noise, which dominates the detection sensitivity at
frequencies below 10 Hz. This requires suspension...
Einstein Telescope features a cryogenic design and aims to be sensitive to gravitational waves down to 3 Hz. Methods to apply low-vibration cryogenic cooling of the mirrors in a cryostat to lower thermal noise are currently investigated in research facilities. New (inertial) sensors an such as described here are necessary to monitor the lower cryogenic stages as the application of heat links...
With increasing sensitivity in the low-frequency region, thermal noise is a growing problem. Cooling the optical parts is one of the essential mitigation techniques, but it has consequences for all components inside the cryostat system. Thus displacement sensors and actuators have to work at the foreseen temperatures below 20 Kelvin. Additionally, they should dissipate as little heat as...
The gravitational-wave (GW) cosmology community has been developing techniques and methodologies to infer the cosmological parameters and investigate the black hole population with Compact Binary Coalescences (CBCs) without an electromagnetic counterpart, commonly referred to as dark sirens.
In this study, our focus lies on the method based on galaxy catalogues such as GLADE+, a composite...
The Gravitational Waves (GWs) interferometers are very big facilities and
the choice of the material to build their arms is crucial within the scope of the
project.
The second generation (2G) of GWs antennas have been built using austenitic
stainless steel like 304L (LIGO, Virgo, KAGRA) and 316L (GEO600), which
are no magnetic materials. However, the third-generation (3G) detectors,...
The Superatenuator is the mechanical structure conceived to suppress the transmission of seismic noise at the level of the optical components in the Advanced VIRGO laser interferometer. Thanks to the experience acquired in the development and construction of this complex structure, the INFN Pisa group is designing, in collaboration with INFN Perugia group, a filtering system based on the...
Anthropogenic or human-induced noise sources such as road or railway traffic, wind turbines, and mining or industrial activities generate ground vibration in a frequency range between 1 and 80 Hz (depending on the source type). The impact of this seismic noise on the operation of the Einstein Telescope can be reduced by hanging the mirrors in suspension towers. However, waves propagating in...
The Italian Einstein Telescope Infrastructure Consortium (ETIC) is an initiative led by the INFN with the aim of establishing a nationwide network of laboratories dedicated to advancing technologies and components crucial for the future Einstein Telescope gravitational wave Interferometer, alongside comprehensive characterization efforts for the Sos-Enattos site in Sardinia, Italy.
This...
The proposed Einstein Telescope (ET) will employ laser light to meticulously monitor the distance between two freely hanging mirrors suspended kilometres apart, enabling the precise detection of subtle distortions in spacetime known as gravitational waves.
For ET to achieve sensitivities greater than 10^-24/sqrt(Hz), various new technologies need to be developed and tested. One of...
To improve the sensitivity of laser interferometric gravitational wave detectors, the reduction of noise sources is of great importance. A primary noise source, which is dominant in the 20-300 Hz band, is thermal noise from the coatings deposited on the terminal masses. Currently, these coatings consist of alternating layers of low- and high- index materials, SiO2 and TiO2-doped Ta2O5...
The Amaldi Research Center (ARC), located in Sapienza University of Rome, will host the first experiment of a cooling system for an actual-sized cryogenic payload. Following the solid conduction cooling scenario, two refrigeration lines, each driven by two Pulse Tubes cryocoolers, will be used to cooldown a cryogenic payload hosted in a specifically designed 3 m tall cryostat.
While one...
A significant challenging aspect of the ET vacuum system is the requirement on the hydrocarbon partial pressure ($p_{hy}$) for molecules heavier than 100 atomic mass unit (amu), as reported in the ET design report:
\begin{equation}
p_{hy}\le1\cdot10^{-14}\,mbar
\end{equation}
In order to reach this partial pressure, both the non volatile and volatile residue of hydrocarbons should be...
The White Rabbit protocol (WR), developed at CERN for the distribution of sub-nanosecond timing to thousands of nodes distributed over large geographic areas, is becoming increasingly reliable and used in many contexts, especially in the modern landscape of multi-messenger astronomy experiments in progress such as KM3NeT, CTAO and of course ET.
Currently, the White Rabbit switch is...
Black hole-neutron star (NSBH) coalescence events are regarded as highly significant phenomena within the current multimessenger framework of gravitational waves,
and they are poised to assume an increasingly prominent role in the foreseeable future. To date, only a handful of such events have been observed,
with GW200105 and GW200115 being the most noteworthy among them. However, with the...